55 research outputs found

    White Matter Changes in Bipolar Disorder, Alzheimer Disease, and Mild Cognitive Impairment: New Insights from DTI

    Get PDF
    Neuropathological and neuroimaging studies have reported significant changes in white matter in psychiatric and neurodegenerative diseases. Diffusion tensor imaging (DTI), a recently developed technique, enables the detection of microstructural changes in white matter. It is a noninvasive in vivo technique that assesses water molecules' diffusion in brain tissues. The most commonly used parameters are axial and radial diffusivity reflecting diffusion along and perpendicular to the axons, as well as mean diffusivity and fractional anisotropy representing global diffusion. Although the combination of these parameters provides valuable information about the integrity of brain circuits, their physiological meaning still remains controversial. After reviewing the basic principles of DTI, we report on recent contributions that used this technique to explore subtle structural changes in white matter occurring in elderly patients with bipolar disorder and Alzheimer disease

    Neuropathological substrates and structural changes in late-life depression: the impact of vascular burden

    Get PDF
    A first episode of depression after 65years of age has long been associated with both severe macrovascular and small microvascular pathology. Among the three more frequent forms of depression in old age, post-stroke depression has been associated with an abrupt damage of cortical circuits involved in monoamine production and mood regulation. Late-onset depression (LOD) in the absence of stroke has been related to lacunes and white matter lesions that invade both the neocortex and subcortical nuclei. Recurrent late-life depression is thought to induce neuronal loss in the hippocampal formation and white matter lesions that affect limbic pathways. Despite an impressive number of magnetic resonance imaging (MRI) studies in this field, the presence of a causal relationship between structural changes in the human brain and LOD is still controversial. The present article provides a critical overview of the contribution of neuropathology in post-stroke, late-onset, and late-life recurrent depression. Recent autopsy findings challenge the role of stroke location in the occurrence of post-stroke depression by pointing to the deleterious effect of subcortical lacunes. Despite the lines of evidences supporting the association between MRI-assessed white matter changes and mood dysregulation, lacunes, periventricular and deep white matter demyelination are all unrelated to the occurrence of LOD. In the same line, neuropathological data show that early-onset depression is not associated with an acceleration of aging-related neurodegenerative changes in the human brain. However, they also provide data in favor of the neurotoxic theory of depression by showing that neuronal loss occurs in the hippocampus of chronically depressed patients. These three paradigms are discussed in the light of the complex relationships between psychosocial determinants and biological vulnerability in affective disorder

    Neuroimaging of dementia in 2013: what radiologists need to know

    Get PDF
    The structural and functional neuroimaging of dementia have substantially evolved over the last few years. The most common forms of dementia, Alzheimer disease (AD), Lewy body dementia (LBD) and fronto-temporal lobar degeneration (FTLD), have distinct patterns of cortical atrophy and hypometabolism that evolve over time, as reviewed in the first part of this article. The second part discusses unspecific white matter alterations on T2-weighted and fluid-attenuated inversion recovery (FLAIR) images as well as cerebral microbleeds, which often occur during normal aging and may affect cognition. The third part summarises molecular neuroimaging biomarkers recently developed to visualise amyloid deposits, tau protein deposits and neurotransmitter systems. The fourth section reviews the utility of advanced image analysis techniques as predictive biomarkers of cognitive decline in individuals with early symptoms compatible with mild cognitive impairment (MCI). As only about half of MCI cases will progress to clinically overt dementia, whereas the other half remain stable or might even improve, the discrimination of stable versus progressive MCI is of paramount importance for both individual patient treatment and patient selection for clinical trials. The fifth and final part discusses the inter-individual variation in the neurocognitive reserve, which is a potential constraint for all proposed methods. Key Points • Many forms of dementia have spatial atrophy patterns detectable on neuroimaging. • Early treatment of dementia is beneficial, indicating the need for early diagnosis. • Advanced image analysis techniques detect subtle anomalies invisible on radiological evaluation. • Inter-individual variation explains variable cognitive impairment despite the same degree of atroph

    Neuroimaging of dementia in 2013: what radiologists need to know

    Get PDF
    The structural and functional neuroimaging of dementia have substantially evolved over the last few years. The most common forms of dementia, Alzheimer disease (AD), Lewy body dementia (LBD) and fronto-temporal lobar degeneration (FTLD), have distinct patterns of cortical atrophy and hypometabolism that evolve over time, as reviewed in the first part of this article. The second part discusses unspecific white matter alterations on T2-weighted and fluid-attenuated inversion recovery (FLAIR) images as well as cerebral microbleeds, which often occur during normal aging and may affect cognition. The third part summarises molecular neuroimaging biomarkers recently developed to visualise amyloid deposits, tau protein deposits and neurotransmitter systems. The fourth section reviews the utility of advanced image analysis techniques as predictive biomarkers of cognitive decline in individuals with early symptoms compatible with mild cognitive impairment (MCI). As only about half of MCI cases will progress to clinically overt dementia, whereas the other half remain stable or might even improve, the discrimination of stable versus progressive MCI is of paramount importance for both individual patient treatment and patient selection for clinical trials. The fifth and final part discusses the inter-individual variation in the neurocognitive reserve, which is a potential constraint for all proposed methods. Key Points • Many forms of dementia have spatial atrophy patterns detectable on neuroimaging. • Early treatment of dementia is beneficial, indicating the need for early diagnosis. • Advanced image analysis techniques detect subtle anomalies invisible on radiological evaluation. • Inter-individual variation explains variable cognitive impairment despite the same degree of atroph

    Neuropathological substrates and structural changes in late-life depression: the impact of vascular burden.

    No full text
    A first episode of depression after 65 years of age has long been associated with both severe macrovascular and small microvascular pathology. Among the three more frequent forms of depression in old age, post-stroke depression has been associated with an abrupt damage of cortical circuits involved in monoamine production and mood regulation. Late-onset depression (LOD) in the absence of stroke has been related to lacunes and white matter lesions that invade both the neocortex and subcortical nuclei. Recurrent late-life depression is thought to induce neuronal loss in the hippocampal formation and white matter lesions that affect limbic pathways. Despite an impressive number of magnetic resonance imaging (MRI) studies in this field, the presence of a causal relationship between structural changes in the human brain and LOD is still controversial. The present article provides a critical overview of the contribution of neuropathology in post-stroke, late-onset, and late-life recurrent depression. Recent autopsy findings challenge the role of stroke location in the occurrence of post-stroke depression by pointing to the deleterious effect of subcortical lacunes. Despite the lines of evidences supporting the association between MRI-assessed white matter changes and mood dysregulation, lacunes, periventricular and deep white matter demyelination are all unrelated to the occurrence of LOD. In the same line, neuropathological data show that early-onset depression is not associated with an acceleration of aging-related neurodegenerative changes in the human brain. However, they also provide data in favor of the neurotoxic theory of depression by showing that neuronal loss occurs in the hippocampus of chronically depressed patients. These three paradigms are discussed in the light of the complex relationships between psychosocial determinants and biological vulnerability in affective disorders
    corecore