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Abstract The structural and functional neuroimaging of de-
mentia have substantially evolved over the last few years. The
most common forms of dementia, Alzheimer disease (AD),
Lewy body dementia (LBD) and fronto-temporal lobar degen-
eration (FTLD), have distinct patterns of cortical atrophy and
hypometabolism that evolve over time, as reviewed in the first
part of this article. The second part discusses unspecific white
matter alterations on T2-weighted and fluid-attenuated inver-
sion recovery (FLAIR) images as well as cerebral microbleeds,
which often occur during normal aging and may affect cogni-
tion. The third part summarises molecular neuroimaging
biomarkers recently developed to visualise amyloid deposits,
tau protein deposits and neurotransmitter systems. The fourth
section reviews the utility of advanced image analysis

techniques as predictive biomarkers of cognitive decline in
individuals with early symptoms compatible with mild cogni-
tive impairment (MCI). As only about half of MCI cases will
progress to clinically overt dementia, whereas the other half
remain stable or might even improve, the discrimination of
stable versus progressive MCI is of paramount importance for
both individual patient treatment and patient selection for
clinical trials. The fifth and final part discusses the inter-
individual variation in the neurocognitive reserve, which is a
potential constraint for all proposed methods.
Key Points
• Many forms of dementia have spatial atrophy patterns de-
tectable on neuroimaging.

• Early treatment of dementia is beneficial, indicating the
need for early diagnosis.

• Advanced image analysis techniques detect subtle anoma-
lies invisible on radiological evaluation.

• Inter-individual variation explains variable cognitive im-
pairment despite the same degree of atrophy.
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Abbreviations
AD Alzheimer disease
CAA cerebral amyloid angiopathy
CBD cortico-basal degeneration
CBS cortico-basal syndrome
CMB cerebral microbleeds
CMH cerebral microhaemorrhages
DAI diffuse axonal injury
CBD corticobasal degeneration
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DLB dementia with Lewy bodies
DTI diffusion tensor imaging
FDG 18F-fluorodeoxyglucose
FLAIR fluid-attenuated inversion recovery
FTD fronto-temporal dementia
FTLD fronto-temporal lobar degeneration
GM grey matter
GRE gradient-echo
LPA logopaenic aphasia
MCI mild cognitive impairment
NBIA neurodegeneration with brain iron accumulation
PCA posterior cortical atrophy
PiB 11C-Pittsburgh compound B
PiD Pick’s disease
PET positron emission tomography
PNFA progressive non-fluent aphasia
PPA primary progressive aphasia
PSP progressive supranuclear palsy
SD semantic dementia
SPECT single photon emission computed tomography
SVM support vector machine
SWI susceptibility-weighted imaging
TBSS tract-based spatial statistics
UBO unspecific bright object
VaD vascular dementia
VBM voxel-based analysis
WM white matter

Introduction

This review deals with the current state of neuroimaging of
neurodegenerative diseases, especially dementias, seen from a
radiologist’s perspective. Initially it will review the basic radio-
logical findings in dementias including specific patterns of atro-
phy, “unspecific” T2/FLAIR lesions and microbleeds. It will
provide, as a comparison, the main findings of molecular imag-
ing using nuclear medicine methods, i.e. positron emission to-
mography (PET) and single photon emission computed tomog-
raphy (SPECT). It will provide an outlook for molecular bio-
markers able to visualise amyloid deposits, tau protein deposits,
various neurotransmitter systems and neuroinflammatory phe-
nomena and a discussion of advanced image analysis tools,
which are or will probably become available for clinical assess-
ment in the near future. Then, this review will discuss an ad-
vanced image analysis tool able to detect subtle morphometric
alterations that remain visible to the human eye. Finally, the inter-
individual variation of the neurocognitive reserve will be
reviewed, which potentially interferes with all the neuroimaging
techniques discussed.

The complex and evolving concept of progressive neu-
rodegeneration including the preclinical phase, especially
Alzheimer disease (AD) (e.g. the review article by Lazarczyk

et al. [1]), goes beyond the scope of this review article, which
is intended as a practical guide for radiologists.

Patterns of focal atrophy in common forms of dementia

The main objective of neuroimaging in dementia has been
and remains the exclusion of other causes of dementia,
especially treatable ones, such as normal pressure hydro-
cephalus, subdural haematomas or neoplasms including me-
ningioma. Nevertheless, many (but not all) common forms of
dementia are associated with typical patterns of focal atro-
phy, which will be discussed in the following section. Radi-
ologists should be aware of these patterns in order to con-
tribute to a specific diagnosis of dementia.

Alzheimer disease

Alzheimer disease (AD) is the most common form of dementia
accounting for approximately 60–70 % (www.mghradrounds.
org). The typical pattern of atrophy consists of atrophy of the
hippocampus with consequent dilatation of the temporal horns of
the lateral ventricles, associated with biparietal atrophy (as illus-
trated in Fig. 1). 18F-Fluorodeoxyglucose positron emission
tomography (FDG-PET) typically shows a reduced glucose
metabolism mainly in the posterior cingulate and precuneus
and in the parieto-temporal regions (Fig. 1), probably owing to
a combination of atrophy and hippocampal–neocortical discon-
nection phenomena [2]. These changes may appear early in the
disease course, even in patients with a diagnosis of mild cogni-
tive impairment (MCI) and earlier than hippocampal atrophy on
morphological imaging.

Posterior cortical atrophy

Posterior cortical atrophy (PCA) is a rare type of dementia
characterised by rapid and relatively selective decline in vision
while memory and language skills are relatively preserved. PCA
is considered by most authors as a variant of AD, with a
characteristic atrophy and hypometabolism of the occipital lobe,
which is often asymmetric (as illustrated in Fig. 2).

Dementia with Lewy bodies

Dementia with Lewy bodies (DLB) is the second most
common type of dementia 25 % (www.mghradrounds.org).
However, as there is no accepted specific pattern of atrophy
(at least for visual inspection), radiologists cannot contribute
to the diagnosis. As a consequence, radiologists may under-
estimate the high prevalence of this type of dementia. Mo-
lecular imaging, however, plays a key role in supporting the
clinical diagnosis of DLB. FDG-PET shows a typical pattern
of hypometabolism, which involves the occipital cortex and
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typically spares the metabolism of the posterior cingulate
cortex (“cingulate island sign”), as shown in Fig. 3 [3]. Addi-
tionally the imaging of dopamine transporters, usually
performed using SPECT and 123I-ioflupane, shows that the
nigro-striatal pathway is affected. This diagnostic test has a
high sensitivity and specificity for the differential diagnosis of
DLB vs. non-DLB dementias such as AD or vascular demen-
tia (VaD): in the latter, the density of dopamine transporters is
not reduced and 123I-ioflupane uptake is preserved [4]. The
normal distribution of 123I-ioflupane is a “comma”-shaped
uptake in the basal ganglia, whereas the pathologically re-
duced uptake in the putamen, with activity confined to the

head of the caudate nucleus, results in a “punctuation”-shaped
uptake (Fig. 3).

Vascular dementia

Vascular dementia (VaD) is almost as prevalent as DLB (20 %,
www.mghradrounds.org). VaD is characterised by confluent
signal alterations of the white matter (WM) visible either as
hypodensities on CT (as illustrated in Fig. 1) or hyperintense
signal on T2/FLAIR MRI. In clinical routine, most patients
have a combination of neurodegenerative dementia, e.g. AD,
and a vascular component, as vascular changes are very

Fig.2 Typical focal atrophy of the occipital lobe, which is often asym-
metric, as in this case, and more pronounced on the right hemisphere.
Note also the concomitant white matter abnormalities. FDG-PET

metabolism shows the hypometabolism of the occipital cortex in addi-
tion to the involvement of posterior cingulate and temporo-parietal
cortices in patients with posterior cortical atrophy (PCA)

Fig.1 Typical examples of Alzheimer disease (AD) (top) and vascular
dementia (VaD) (bottom). Typical non-enhanced axial CT of an AD
patient with focal atrophy of the hippocampus leading to dilation of the
temporal horns of the lateral ventricles (arrows) and subtle biparietal
atrophy. FDG-PET images show the typical hypometabolism of the
posterior cingulate gyrus/precuneus and of the parietal and temporal
cortex, bilaterally. These changes are visible on radioactivity distribution

images and are significant in comparison with a normal database using
BRASS® software (see Sect. “Advanced image analyses” for details).
Typical example of VaD with confluent signal alterations of the white
matter. Note that in contrast to the AD patient (Fig. 1) of the same age,
there is no focal atrophy of the peri-hippocampal region. FDG-PET
images usually show preserved uptake in the posterior cingulate gyrus
and focal hypometabolism, corresponding to vascular lesions
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common during aging. Having a neurodegenerative disease is
obviously not protective against concomitant vascular disease.

Fronto-temporal lobar degeneration

Fronto-temporal lobar degeneration is a heterogeneous group of
dementias. Moreover, terminology and classification have
changed over the last few years and different classifications
exist. For the purpose of this review, and in order to avoid

misunderstandings, the term fronto-temporal lobar degenera-
tion (FTLD) will be used for the entire group of dementias.
Note that some authors use fronto-temporal dementia (FTD) as
a term for the entire group, whereas others use this term as a
subgroup of dementias including Pick’s disease (PiD). To avoid
misunderstandings, some authors use the term behavioural
variant FTD (bvFTD) to unambiguously refer to the subgroup
of dementias. Other subgroups of FTLD are progressive non-
fluent aphasia (PNFA) and semantic dementia (SD). Some

Fig.3 Typical findings in
dementia with Lewy bodies
(DLB): hypometabolism of the
parieto-occipital cortex with
sparing of the posterior cingulate
cortex, and reduced uptake of the
123I-ioflupane in the basal
ganglia. As a comparison,
findings in AD are shown: a
pattern of posterior
hypometabolism sparing the
occipital cortex and normal
123I-ioflupane SPECT imaging

PNFA 
progressive non-fluent aphasia 

SD 
semantic dementia 

(bv)FTD 
Behavioral variant fronto-temporal dementia 

Incl. M. Pick 
PSP 

Progressive supranuclear palsy 

CBD 
Corticobasal degeneration 

FTLD 
fronto-temporal lobar degeneration 

Fig.4 Overview of dementias of the fronto-temporal lobar degeneration
(FTLD) group. Behavioural FTD has frontal atrophy and hypometabolism
with an anterior to posterior gradient. Progressive non-fluent aphasia
(PNFA) often has bilateral peri-insular atrophy and left fronto-temporal
hypometabolism. Semantic dementia (SD) has temporo-polar atrophy and
hypometabolism with an anterior to posterior gradient, often more pro-
nounced in the left hemisphere. Progressive supranuclear palsy syndrome
(PSPS) and cortico-basal syndrome (CBS) are sometimes considered to be

additional types of FTLD. Progressive supranuclear palsy (PSP) may have
additional neurocognitive decline and has typical midbrain atrophy leading
to the penguin or hummingbird sign, whereas FDG-PET images also show
cortical frontal hypometabolism. Cortico-basal degeneration (CBD) has
bilateral parietal and sometimes associated infratentorial atrophy and
typically asymmetric FDG-PET hypometabolism in fronto-parietal re-
gions and possibly in subcortical regions
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authors additionally consider progressive supranuclear palsy
syndrome (PSPS) and cortico-basal syndrome (CBS) in the
group of FTLD, both primarily neurodegenerative motor dis-
eases yet sometimes with associated dementia, which can oc-
casionally be the leading symptom [5] (Fig. 4).

bvFTD has characteristic atrophy and hypometabolism
visible on FDG-PET images in both the frontal and anterior
temporal lobes, with a characteristic anterior to posterior
gradient. Note that images are acquired in the supine posi-
tion. The brain is heavier than the cerebrospinal fluid and
consequently in a declining occipital position. The occipital
lobe is “squeezed” against the occipital bone, whereas the
frontal lobe is floating in the cerebrospinal fluid and seems to
open up. Therefore, neuroimaging typically overestimates
frontal atrophy yet underestimates occipital atrophy.

PNFA typically has a bilateral peri-insular atrophy, and
asymmetric left frontal and temporal hypometabolism.

SD is characterised by anterior temporo-polar atrophy and
hypometabolism usually more pronounced on the left hemi-
sphere, although right-dominant forms also exist.

Progressive non-fluent aphasia and semantic dementia are
sometimes collectively called primary progressive aphasia
(PPA). Logopaenic aphasia (LPA) has recently been de-
scribed as a third subtype of PPA characterised by impaired
word retrieval and sentence repetition yet intact motor
speech and grammar [6, 7]. The atrophy typically predomi-
nates in left inferior frontal and posterior temporal regions
[8]. Note that although LPA is considered a third variant of
PPA, it is probably a variant of AD as opposed to the FTLD
variants PNFA and SD. This is also supported by the finding
of left parietal and posterolateral temporal lobe hypometabolism
and positivity to amyloid PET imaging in these patients [9].
This rare form of dementia is not discussed in further detail in
this review.

Although a detailed anatomical cortical measurement might
reasonably well discriminate the main subtypes of FTLD [10],
the imaging appearance of these forms of dementia, i.e. bvFTD,
PNFA and SD, are variable, with considerable overlap [5]. A
radiologist should thus detect if the atrophy of a given patient
has a focal predominance in the frontal and laterotemporal
regions with an anterior to posterior gradient and open the
differential diagnosis of FTLD without insisting on a specific
subgroup diagnosis.

PSP is primarily a neurodegenerative movement disorder
characterised by a pattern of atrophy notably of the midbrain
leading to the penguin or hummingbird sign [11], which can
be quantified using for example the MR parkinsonism index
[12]. A subgroup of PSP patients develop neurocognitive
decline and in some cases the cognitive impairment may
even be the leading symptom. FDG-PET images show a
typical cortical hypometabolism in the whole prefrontal cor-
tex, associated with hypometabolism in the basal ganglia,
thalamus and mesencephalon.

CBD is, similar to PSP discussed above, primarily a neuro-
degenerative movement disorder involving cortico-basal degen-
eration, yet a subgroup of patients develop neurocognitive de-
cline. In analogy to PSP discussed above, the cognitive impair-
ment may be the leading symptom in some cases. CBS typically
has a focal biparietal atrophy. Unlike AD, biparietal focal atrophy
is not associated with peri-hippocampal atrophy but sometimes
with infratentorial cerebellar atrophy. FDG-PET images typically
show a unilateral or strongly asymmetric cortical (parietal, pre-
frontal and motor cortex) and subcortical hypometabolism, con-
tralateral to the affected body side.

Neurodegeneration with brain iron accumulation

Neurodegeneration with brain iron accumulation (NBIA) is a
rare group of diseases with an estimated incidence of 1–
3/1,000,000 characterised by brain iron accumulation notably
in the basal ganglia. Pantothenate kinase-associated
neurodegeneration (PKAN), formally known as Hallervorden–
Spatz syndrome, is themost widely known disease of this group.
It is caused by a mutation of the PANK-2 gene (pantothenate
kinase) at chromosome 20p13. Other forms include infantile
neuroaxonal dystrophy (INAD), neuroferritinopathy,
aceruloplasminaemia, Kufor-Rakeb disease (KRD), fatty acid
hydroxylase-related neurodegeneration (FAHN) as well as a
group of idiopathic NBIA of (still) unknown origin. These
conditions show a wide clinical and pathological spectrum in-
cluding spastic paraplegias, leukodystrophies and neuronal
ceroid lipofuscinosis. Imaging appearance is also variable. The
typical imaging sign called the “eye of the tiger” consists of a
central hyperintensity of the globus pallidus with surrounding
hypointensity on T2w images, and can be identified in most
cases of PKAN [13]. Although NBIA in most cases is a disease
of infants and childrenwith extrapyramidalmovement disorders,
adult forms of NBIA exist and sometimes dementia may be the
leading symptom. Therefore this condition, even though gener-
ally a rare cause of dementia, is briefly mentioned in this review.

“Non-specific” white matter T2/FLAIR lesions
and normal aging

Hyperintense signal alterations of the WM on T2 and FLAIR
images are very common findings in the elderly (a typical
example is illustrated in Fig. 5). These “unspecific”WM lesions,
sometimes also called unspecific bright objects (UBOs), have a
prevalence of about 15 % at the age of 60, and around 80 % at
the age of 80 [14–16]. Generally speaking, these “unspecific”
WM lesions are associated with an increased risk of cognitive
decline and dementia, stroke and even death [16, 17]. When
looking at the correlation between T2w lesions and
neurocognitive decline in more detail, however, it becomes
more controversial. For example, only five out of eight studies
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found an association betweenWMhyperintensities and global
cognitive decline, whereas the remaining three studies were
negative [16]. This might be attributed to the inter-individual
variation of the cognitive reserve (discussed in detail in Sect.
“Neurocognitive reserve mechanisms and imaging bio-
markers”) [18]. The correlation between radiological WM
lesions and histopathology is no less controversial. Despite
the very frequent observation of WM hyperintensities on
MRI, radiological–pathological correlation studies, especially
in combination with pre-mortem MRI, are rare [19]. Histo-
pathological correlates of T2w hyperintensities are very het-
erogeneous [20] and include myelin pallor, tissue rarefaction
including loss of myelin and axons as well as mild gliosis [16,
21–24]. A recent investigation [25] correlated pre-mortem
WM hyperintensities with post-mortem MRI in 59 healthy
elderly persons and found thatMRI overestimates periventricular

lesions yet underestimates deep WM lesions with respect to
histopathological demyelination. This might be due to the rela-
tively high local water content in the periventricular lesions in
combination with increasing blood–brain barrier permeability
which occurs during aging [26] and which tends to cause T2
and FLAIR hyperintense signal onMRI compared with the deep
WM which has a relatively lower local water content. Corre-
spondingly, whereas most correlation studies assess global WM
lesion load, some studies separately assessed periventricular and
deep WM lesions and indicate higher clinical relevance of deep
versus periventricular T2-weighted hyperintensities [15, 27].
Future correlation studies are necessary, ideally combining mul-
tiple imaging contrasts including T2/FLAIR, diffusion tensor
imaging (DTI) and magnetisation transfer, in order to better
describe and understand the histopathological correlates of WM
lesions detected on MRI.

Fig.6 Example of typical microbleeds in the context of a hypertensive
microvascular leucencephalopathy. Microbleeds are small hypointense
signal alterations on gradient-echo T2*w imaging (right), which are
(usually not) visible on standard spin-echo T2w (left). The random

distribution of the microbleeds including the basal ganglia, the clinical
context of arterial hypertension and the diffuse white matter T2w
hyperintensities (microvascular leucoencephalopathy, not illustrated)
suggests the diagnosis of hypertensive cerebral microbleeds

Fig.5 A typical example of
“unspecific” white matter signal
alterations during normal aging
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Cerebral microbleeds

Cerebral microbleeds (CMB) or cerebral microhaemorrhages
(CMH) are small hypointense lesions seen on susceptibility
imaging with variable cut-off size in the literature typically
between 5 and 10 mm [28–31] (see Fig. 6 for an example of
hypertensive microbleeds). CMBs have attracted growing in-
terest in recent years. This may at least partly be explained by
the wide availability of high-field MRI systems and novel
imaging sequences, in particular susceptibility-weighted imag-
ing (SWI), as these technical developments increase the num-
ber of detectable microbleeds [32]. For example, SWI identi-
fied significantly more CMBs than T2* in 141 patients in a
memory clinic setting [29]. This increase in detection rate of
40% in SWI versus 23% in T2* did, however, not improve the
correlation with vascular risk factors or radiological markers of
small-vessel disease.

Similar to the WM hyperintensities discussed above,
clinical–radiological correlation studies of CMBs are rare and
often produce partially conflicting data [33–35]. The preva-
lence of microhaemorrhages is higher in VaD (65 %) than in
MCI (20 %) or AD (18 %) using T2*w imaging [30]. An SWI
study at 3 T principally replicated these results [36] as follows:
VaD (86%), DLB (54%), AD (48%), MCI (41%) and clearly
less commonly in FTLD (27 %) and subjective cognitive
complaints (22 %). SWI detected more microhaemorrhages
than T2*, as expected from previous studies cited above.
Although the number of CMBs is increased in MCI, it is less
clear whether CMB loadmay predict further cognitive decline.
Whereas the frequency of CMBs at baseline did not differ
between controls andMCI (11% and 14% respectively), cases
with more than three microhaemorrhages were found only
within the progressive MCI group [33]. Another study found
that only one of 23 stable MCI but 8 of 26 progressive MCI
had more than one CMH at baseline [34]. Yet another study
found a higher rate of CMBs inMCI (0.6±0.9) than in controls
(0.2±0.5), yet the number of microhaemorrhages did not dis-
criminate stable versus progressive MCI. In summary, these
findings indicate a detrimental effect of CMBs [37].

Concerning the radiological–histopathological correlation of
CMB, available data are also rare, again similar to the WM
hyperintensities discussed above. The prevalence of CMBs on
histopathology is around 60–70 % in the age group above 80–
85 years [38, 39]. The radiological studies discussed above
reported lower rates of CMBs on imaging (although admittedly
the age was a little lower in some studies), indicating that
neuroimaging may have some false-negative results. The few
available radiological–histopathological correlation studies of
CMBs also demonstrate false-positive results of neuroimaging.
For example, one T2* study found true-positive radiological–
histopathological correlation in 21 of 34 lesions (62 %), where-
as haemosiderin deposits were noted without MR signal
changes in two (of 11) brains (false negatives 18 %) [40].

Another more recent study assessed SWI CMBs in a
preselected sample of dementia patients with cerebral amyloid
angiopathy [41]. Of the 38 SWI CMBs, the authors identified 7
small cavities, 1 dissection in the wall of a grossly distended
vessel and 1 microaneurysm (7+1+1=24 % false negatives).
The authors concluded that “…the underlying pathologic le-
sions we discovered correlating to (MRI) hypointensities were
quite varied” [41]. In conclusion, CMB “mimics” include
micro-dissection, microaneurysm, microcalcifications and arte-
riolar pseudocalcification [40–42].

The most important differential diagnoses of multiple
microbleeds include cerebral amyloid angiopathy (CAA), mul-
tiple (micro-)cavernomas and haemorrhagic diffuse axonal in-
jury (DAI), which will be only very briefly discussed in the
context of the current review on dementias. CAA is
characterised by multiple microbleeds typically at the grey–
white matter junction in a parieto-occipital lobar distribution
sparing the basal ganglia and infratentorial regions. Multiple
familial (micro-)cavernomas can usually be identified, as at
least one cavernoma is large enough to create the typical
“pop-corn” image on T2w imaging. Radiation-induced multi-
ple micro-cavernomas can be identified on the basis of the
patient’s history. Finally, traumatic haemorrhagic DAI can
again be identified on the basis of the clinical context and
eventually other traumatic lesions such as fractures or subdural
haematomas.

Today, there are no generally accepted guidelines concerning
the interpretation of CBMs, for example how many CMBs are
considered normal for a given age group, or whether some
locations of CMBs might be clinically more relevant than other
locations. Again, in agreement with the WM hyperintensities
discussed above, future correlative studies are needed to improve
our understanding of the diagnosis and nature of small regions of
signal loss on T2* and SWI sequences.

Nuclear medicine: molecular imaging

The marker most commonly used is PET imaging of brain
metabolism, using FDG as a tracer. This technique shows
typical hypometabolic patterns in different dementia syn-
dromes, as shown in Figs. 1, 2, 3 and 4, with an overall superior
sensitivity than hypoperfusion assessment by SPECT [43]. A
second molecular marker used for the differential diagnosis of
dementias is dopamine transporter imaging, mainly by SPECT
and 123I-ioflupane (see Fig. 3).

Over the last decade, specific nuclear medicine tracers able
to visualise in vivo amyloid plaques, which represent an im-
portant pathological hallmark of AD, have been tested and
validated in humans. Most amyloid imaging investigations
published to date have used 11C-Pittsburgh compound B
(PiB) as a tracer [44]. This tracer has been proven to be able
to bind fibrillary amyloid with a good correlation with post-
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mortem measures [45]. Newer 18F-labeled compounds, which
have been recently patented, are also becoming available, and
will presumably have a wider diffusion in clinical practice,
owing to their greater availability. This is linked to the longer
half-life of the isotope: whereas 11C has a half-life of 20 min,
needing an onsite cyclotron for production of the tracer, 18F has
a half-life of 110 min and therefore the tracer can be produced
off-site.

In recent years, many studies have investigated the use of
amyloid imagingmarkers. Excellent correspondencewas dem-
onstrated between ante-mortem amyloid PET imaging findings
and Aβ deposition in the brain at autopsy [46]. A consistent
finding across different studies is that around 30 % of cogni-
tively normal elderly subjects have abnormal findings on PET
amyloid imaging studies, which matches quite well the pro-
portion of cognitively normal elderly subjects with an autopsy
diagnosis of AD [47, 48]. These individuals are presumably at
risk of subsequently developing dementia, a risk possibly
modulated by their neurocognitive reserve potential. A recent
multicentre European study on amyloid PET imaging in MCI
and AD has shown that none of the MCI amyloid-negative
patients converted to AD, indicating that this imaging method
has an excellent negative predictive value for progression to
AD [49]. These tracers will mainly be used for confirming a
diagnosis of AD when clinically suspected, for early diagnosis
inMCI subjects, and for differential diagnosis with other forms
of amyloid-negative dementia, such as FLTD [50].

Specific tracers also exist that are able to visualise both
amyloid and tau aggregates, which are the other major histopath-
ological hallmarks of AD [51], or tau aggregates alone [52], but
clinical experience with these tracers is still quite limited.

Molecular imaging by radioactive tracers also allows other
phenomena to be explored, such as neuroinflammation, which
occurs in some forms of dementia [53, 54], or specific neuro-
transmission systems, such as the cholinergic [55, 56], serotoner-
gic [57] and the previously mentioned dopaminergic system,
among others. The discussion of these applications, which are
still limited to research settings for the moment, goes beyond the
scope of this review.

Advanced image analyses

Although there are currently no generally accepted disease-
modifying treatments for AD, several promising candidates
are currently being evaluated (for review, see Nitsch and Hock
[58] and Duara et al. [59]). Early treatment is probably more
beneficial in stopping or at least slowing down the progressive
neurodegeneration than treatment of clinically overt dementia
at a late stage [60, 61]. This implies the need for early diagnosis
parameters including neuroimaging, and explains the interest in
MCI, which was initially perceived as a prodromal state of AD
[62]. The concept of MCI has evolved in recent years and now

represents a heterogeneous group of various subtypes of MCI,
with different progression rates of the various MCI subtypes
[62–65].

Note that without further preselection, only about half ofMCI
subjects will progress toAD,whereas the other half remain stable
or may even improve. This is problematic for early treatment of
MCI individuals (half of MCI individuals may be treated despite
the fact that they would remain stable even without treatment) as
well as for clinical trials. For a typical placebo-controlled trial,
50%ofMCI patients remain stable evenwithout treatment. Only
25 % of cases are progressive MCI and obtain the active med-
ication. On the other hand, 25 % of cases are stable MCI and
remain stable despite being in the placebo group. This explains
why it is extremely difficult to demonstrate a beneficial drug-
related effect in unselected MCI cases.

This need for early detection of at-risk patients led to the
creation of the Alzheimer Disease Neuroimaging Initiative
(ADNI) [66], the first large multicentre study with standardised
MR imaging parameters, also including additional neurocog-
nitive and other (serology etc.) assessments. The data are shared
via the Internet with research groups all over the world, and this
has led to multiple publications that have significantly im-
proved the understanding of the progression of neurodege-
neration as well as new image analysis tools, amongst others.
This project also led to several currently on-going offspring
studies, such as its European equivalent AddNeuroMed [67].
The ADNI project has led to a standardisation of MR imaging
parameters, and many centres today use the ADNI imaging
parameters even for clinical assessment of patients not enrolled
in studies.

Advanced image analysis techniques concerning this topic
are based on the assumption that subtle and systematic changes
in brain structure already exist during the early phase of
neurodegeneration, yet these changes are too subtle to be
detected by standard visual inspection of the MRI and are
detectable only by advanced image analysis techniques such
as voxel-based morphometric (VBM) analysis of grey matter
(GM) [68], e.g. in MCI [69–74], or DTI-based analysis of
WM, e.g. implementing voxel-wise tract-based spatial statisti-
cal analysis (TBSS) [75], e.g. in MCI [76–84]. Most of these
advanced image analysis studies used group-level compari-
sons, comparing typically patients with MCI versus controls
and/or AD. Although such studies detect the spatial distribu-
tion of structural brain alterations during neurodegeneration,
these group-level results cannot be transferred to the detection
of individual patients in a clinical context. This has led to a
fundamental shift in the paradigm and the application of clas-
sification analyses. The basic principle of such classification
analyses can be explained with the example of face recogni-
tion. Although on average, two groups of persons might have
the most pronounced group-level differences for example at
the tip of the nose, it is not possible to detect an individual face
only using this single parameter (“feature” in the terminology
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of classification analyses). On the other hand, individual faces
can be recognised by a specific pattern, which combines mul-
tiple features (such as ears, lips, eyes etc.) although each
feature per se is not necessarily significantly different between
groups (see Haller et al. for a review [85]). Support vector
machines (SVM) [86] are a currently frequently implemented
technique as the specific properties of this classification tech-
nique are well adapted to neuroimaging data. Note, however,
that multiple other classification techniques exist and that the
field is rapidly evolving, indicating that other classifiers may
provide better or more robust results and replace the currently
most commonly implemented SVM classifier in the future.
The discrimination between stable versus progressive MCI
based on SVM classifiers was possible with an accuracy of
85–90% using GM [87–89], 90–95% usingWMDTI [83, 84]
and 85 % using iron deposition SWI [35]. Moreover it is
possible to classify the different MCI subtypes with very high
accuracy [90]. Assuming that different MCI subtypes best
respond to different treatment options, this MCI subtype clas-
sification may be relevant in order to ascertain the optimal
treatment at an individual level.

Current projects aim to combine multiple imaging tech-
niques (sometimes with other parameters such as cerebrospinal
fluid analysis, electroencephalography etc.) with the aim of
further improving the classification accuracy and in particular
the robustness of classification of for example MRI data ac-
quired on different MRI machines at different field strengths.
Although the concept of combining multiple imaging tech-
niques is evident and straightforward, the technical implemen-
tation and in particular optimising the combination of multiple
classification parameters are much more challenging [85]. One
example is a recent study demonstrating that the combination
of DTI-derived structural connectivity and resting-state fMRI-
derived functional connectivity did indeed improve classifica-
tion accuracy [91].

As many patients undergo MR imaging for clinical reasons,
notably to exclude other diseases, these advanced image analysis
techniques in principle reuse existing MRI data as long as
standard imaging protocols are adopted. In order to be clinically
useable in daily routine practice, these classification methods
must be optimised and adapted to routine clinical neuroradiolog-
ical use. Current developments include software installations
directly implemented on the MRI machine or cloud-based solu-
tions evaluating individual cases uploaded via the Internet to
provide automated evaluation of individual patients. Currently,
these solutions still require technical improvements and valida-
tion for medico-legal approval before they can be used in clinical
routine.

For FDG-PET techniques the region-wise or voxel-wise
comparison of individual PET images, normalised to the global
uptake or to the uptake in a preserved region (often the cere-
bellum is chosen for this purpose) with a database of PET
images acquired in healthy, ideally age-matched, individuals,

is an important advance in image analysis, which already plays
a relevant role in clinical practice. Such analyses provide maps
of significant deviations from the normal population. The ex-
amples provided in Figs. 1 and 4 show the added value of this
analysis: it clearly depicts patterns of reduced metabolism and
limits subjectivity in image interpretation. Various research and
commercial software tools are available for this purpose, pro-
viding complementary approaches to this problem (region-
based analyses, automated classification, etc.) and have been
tested in numerous clinical studies [92–96].

Neurocognitive reserve mechanisms and imaging
biomarkers

Owing to individual predisposition, education, social context
and other factors, some individuals may maintain normal
cognitive functions longer than other individuals despite a
similar degree of neurodegeneration—or from the other per-
spective, the same amount of neurodegeneration may lead to a
variable degree of clinical cognitive decline, as first described
in 1968 [97]. Various neuroimaging studies have documented
a reserve phenomenon in dementias, mainly in AD, but also in
other dementia types such as FTD or DLB, showing an asso-
ciation between education, occupation, socioeconomic status
and measures of an on-going neuropathological process, such
as brain atrophy, reduced brain perfusion and metabolism, or
increased amyloid deposition, when correcting for clinical and
neuropsychological severity [98–103]. These observations
may explain the sometimes poor correlation between neuro-
imaging biomarkers and cognitive function and should be
taken into account when interpreting such biomarkers as a
potential constraint for all advanced analysis techniques.

Conclusions

The radiologist needs to be aware that many forms of dementia
have typical patterns of focal brain atrophy. Attentive visual
inspection of focal atrophy may sometimes contribute to the
diagnosis of a specific form of dementia, leading neuroimaging
beyond the pure exclusion of other diseases. Nevertheless,
radiologists should be aware of the inter-individual variation
in the neurocognitive reserve, meaning that the same amount
of brain pathological features will lead to a variable degree of
cognitive symptoms depending on individual factors, educa-
tion, social integration etc. Standardised imaging protocols
using both “standard imaging techniques” and advanced se-
quences or molecular imaging together with multiple new
advanced data analyses are currently being evaluated, and
may in the near future contribute to the computer-aided early
diagnosis of subtle brain structural changes at an individual
patient level. Thus we may see what is at the moment still
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“invisible” during primary radiological inspection. The radiol-
ogist should be able to contribute to an early diagnosis of
cognitive decline that will help to select at-risk patients for
clinical trials in order to improve patients’ outcomes.
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