39 research outputs found

    Backbone chemical shift assignments of human 14-3-3σ\sigma

    Get PDF
    14-3-3 proteins are a group of seven dimeric adapter proteins that exert their biological function by interacting with hundreds of phosphorylated proteins, thus influencing their sub-cellular localization, activity or stability in the cell. Due to this remarkable interaction network, 14-3-3 proteins have been associated with several pathologies and the protein-protein interactions established with a number of partners are now considered promising drug targets. The activity of 14-3-3 proteins is often isoform specific and to our knowledge only one out of seven isoforms, 14-3-3ζ\zeta, has been assigned. Despite the availability of the crystal structures of all seven isoforms of 14-3-3, the additional NMR assignments of 14-3-3 proteins are important for both biological mechanism studies and chemical biology approaches. Herein, we present a robust backbone assignment of 14-3-3σ\sigma, which will allow advances in the discovery of potential therapeutic compounds. This assignment is now being applied to the discovery of both inhibitors and stabilizers of 14-3-3 protein-protein interactions

    Identification of Novel Functions for Hepatitis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly

    Get PDF
    International audienceHepatitis C virus (HCV) envelope glycoprotein complex is composed of E1 and E2 subunits. E2 is the receptor-binding protein as well as the major target of neutralizing antibodies, whereas the functions of E1 remain poorly defined. Here, we took advantage of the recently published structure of the N-terminal region of the E1 ectodomain to interrogate the functions of this glycoprotein by mutating residues within this 79-amino-acid region in the context of an infectious clone. The phenotypes of the mutants were characterized to determine the effects of the mutations on virus entry, replication, and assembly. Furthermore, biochemical approaches were also used to characterize the folding and assembly of E1E2 heterodimers. Thirteen out of 19 mutations led to viral attenuation or inactivation. Interestingly, two attenuated mutants, T213A and I262A, were less dependent on claudin-1 for cellular entry in Huh-7 cells. Instead, these viruses relied on claudin-6, indicating a shift in receptor dependence for these two mutants in the target cell line. An unexpected phenotype was also observed for mutant D263A which was no longer infectious but still showed a good level of core protein secretion. Furthermore, genomic RNA was absent from these noninfectious viral particles, indicating that the D263A mutation leads to the assembly and release of viral particles devoid of genomic RNA. Finally, a change in subcellular colocalization between HCV RNA and E1 was observed for the D263A mutant. This unique observation highlights for the first time cross talk between HCV glycoprotein E1 and the genomic RNA during HCV morphogenesis

    DEB025 (Alisporivir) Inhibits Hepatitis C Virus Replication by Preventing a Cyclophilin A Induced Cis-Trans Isomerisation in Domain II of NS5A

    Get PDF
    DEB025/Debio 025 (Alisporivir) is a cyclophilin (Cyp)-binding molecule with potent anti-hepatitis C virus (HCV) activity both in vitro and in vivo. It is currently being evaluated in phase II clinical trials. DEB025 binds to CypA, a peptidyl-prolyl cis-trans isomerase which is a crucial cofactor for HCV replication. Here we report that it was very difficult to select resistant replicons (genotype 1b) to DEB025, requiring an average of 20 weeks (four independent experiments), compared to the typically <2 weeks with protease or polymerase inhibitors. This indicates a high genetic barrier to resistance for DEB025. Mutation D320E in NS5A was the only mutation consistently selected in the replicon genome. This mutation alone conferred a low-level (3.9-fold) resistance. Replacing the NS5A gene (but not the NS5B gene) from the wild type (WT) genome with the corresponding sequence from the DEB025res replicon resulted in transfer of resistance. Cross-resistance with cyclosporine A (CsA) was observed, whereas NS3 protease and NS5B polymerase inhibitors retained WT-activity against DEB025res replicons. Unlike WT, DEB025res replicon replicated efficiently in CypA knock down cells. However, DEB025 disrupted the interaction between CypA and NS5A regardless of whether the NS5A protein was derived from WT or DEB025res replicon. NMR titration experiments with peptides derived from the WT or the DEB025res domain II of NS5A corroborated this observation in a quantitative manner. Interestingly, comparative NMR studies on two 20-mer NS5A peptides that contain D320 or E320 revealed a shift in population between the major and minor conformers. These data suggest that D320E conferred low-level resistance to DEB025 probably by reducing the need for CypA-dependent isomerisation of NS5A. Prolonged DEB025 treatment and multiple genotypic changes may be necessary to generate significant resistance to DEB025, underlying the high barrier to resistance

    Etude in vivo de l'activation d'une pro-drogue par des mycobactéries à l'aide de la RMN 1H HRMAS (analyse structurale et biochimique de OPgG de Escherichia coli, une protéine requise pour la biosynthÚse des glucanes périplasmiques osmorégulés)

    No full text
    L'Ă©thionamide (ETH) est un antituberculeux de seconde ligne, trĂšs efficace dans le traitement des patients infectĂ©s par des souches de Mycobacterium tuberculosis multirĂ©sistantes aux molĂ©cules de premiĂšre ligne. L'ETH est une pro-drogue, elle nĂ©cessite donc de subir un processus d'activation afin d'acquĂ©rir son activitĂ© antibiotique dirigĂ©e contre la biosynthĂšse de l'enveloppe cellulaire de M. tuberculosis. Une cible identifie e de l'ETH est InhA, une enzyme impliquĂ©e dans la synthĂšse des acides mycoliques, un constituant majeur de la paroi des mycobactĂ©ries. Un activateur de l'ETH a Ă©tĂ© identifiĂ© chez M. tuberculosis, il s'agit de la protĂ©ine EthA, une monooxygĂ©nase. La surexpression de cette protĂ©ine engendre une hypersensibilitĂ© des mycobactĂ©ries vis-Ă -vis de l'ETH. A l'inverse, la surexpression de EthR, un rĂ©presseur transcriptionnel de ethA, rend les bactĂ©ries rĂ©sistantes Ă  l'ETH. Dans le but de mieux apprĂ©hender le rĂŽle de l'activateur EthA, nous avons surexprimĂ© et partiellement purifiĂ© cette protĂ©ine. En solution, EthA forme des agrĂ©gats de hauts poids molĂ©culaires, ce qui ne nous a pas permis d'aller plus en avant dans l'Ă©tude structurale de la protĂ©ine que nous avions envisagĂ©e. Nous avons alors utilisĂ© une technique originale : la RMN 1H HRMAS afin de caractĂ©riser in vivo l'activation de l'ETH par des mycobactĂ©ries. Cette technique nous a permis de dĂ©tecter un mĂ©tabolite, ETH*, dĂ©rivĂ© de l'ETH et formĂ© par les mycobactĂ©ries surexprimant EthA. Le mĂ©tabolite ETH* s'accumule dans les cellules tandis que deux autres mĂ©tabolites de l'ETH, respectivement ses dĂ©rivĂ©s S-oxyde et alcool, sont prĂ©sents uniquement dans le milieu de culture. Nous avons partiellement caractĂ©risĂ©, par RMN, la structure de ETH* qui comprend un cycle 2-Ă©thyl-pyridine ainsi qu'un groupement en position 4 qui contient un atome de carbone quaternaire. La nature exacte de cette fonction exo-cyclique reste Ă  prĂ©ciser. La technique RMN 1H HRMAS nous a Ă©galement permis de dĂ©tecter, ex-vivo, les mĂ©tabolites de l'ETH prĂ©sents dans un foie d'une souris ayant reçu de l'ETH. L'ensemble de ces travaux s'inscrit dans la dĂ©marche d'une meilleure comprĂ©hension de l'activation de l'ETH chez les mycobactĂ©ries afin de concevoir in fine des versions amĂ©liorĂ©es de la drogue. Ces Ă©tudes ont Ă©galement permis de mettre en Ă©vidence les bĂ©nĂ©fices de l'utilisation de la RMN 1H HRMAS dans l'Ă©tude d'un processus de mĂ©tabolisation in vivo. Les OPGs (Glucanes PĂ©riplasmiques OmorĂ©gulĂ©s) sont des molĂ©cules glucosidiques trĂšs largement rĂ©pandues parmi les ProtĂ©obactĂ©ries. Les OPGs sont synthĂ©tisĂ©s en rĂ©ponse Ă  un environnement oĂč l'osmolaritĂ© est faible. Leur concentration pĂ©riplasmique devient alors trĂšs Ă©levĂ©e et les OPGs peuvent reprĂ©senter jusqu'Ă  5 % du poids sec des cellules de E. coli. Le rĂŽle physiologique des OPGs demeure incertain mais ces molĂ©cules semblent ĂȘtre impliquĂ©es dans un processus d'osmoprotection et pourraient servir de signal indiquant aux bactĂ©ries d'adapter leur mĂ©tabolisme aux conditions environnementales. Les OPGs jouent un rĂŽle, direct ou indirect, dans la pathogĂ©nicitĂ©. En effet, en inhibant leur biosynthĂšse chez Erwinia chrysanthemi, Agrobacterium tumefasciens ou encore Pseudomonas aeruginosa, ces bactĂ©ries sont avirulentes. Les OPGs de E. coli sont des oligomĂšres linĂ©aires de glucose liĂ©s en -1,2 et ramifiĂ©s par des rĂ©sidus de glucose en position -1,6. Ces OPGs sont substituĂ©s par des groupements phosphoglycĂ©rol, phosphoĂ©thanolamine et succinate. Chez E. coli, deux protĂ©ines, OpgH et OpgG, sont strictement nĂ©cessaires Ă  la biosynthĂšse du squelette glycosidique des OPGs. La premiĂšre est une glycosyltransfĂ©rase membranaire tandis que la deuxiĂšme est une protĂ©ine pĂ©riplasmique dont la fonction est inconnue. Dans le but de comprendre le rĂŽle de OpgG dans la biosynthĂšse des OPGs nous avons rĂ©alisĂ© une Ă©tude structurale et biochimique de la protĂ©ine. OpgG de E. coli a Ă©tĂ© cristallisĂ©e puis sa structure rĂ©solue Ă  2,5 Å par diffraction des rayons X. OpgG est organisĂ©e en deux domaines formĂ©s par des feuillets . Le domaine N-terminal comprend une large cavitĂ© qui reprĂ©sente un site actif potentiel et prĂ©sente des homologies de structure avec de nombreuses protĂ©ines reliĂ©es au mĂ©tabolisme de composĂ©s glycosidiques. Le domaine C-terminal a une structure similaire Ă  celle d'un domaine de type immunoglobuline. Nous avons ensuite investiguĂ© une potentielle interaction entre OpgG et la glycosyltransfĂ©rase membranaire OpgH. Pour ce faire, une boucle pĂ©riplasmique de OpgH a Ă©tĂ© clonĂ©e puis exprimĂ©e en fusion au domaine B1 de la protĂ©ine G streptococcale. L'interaction entre les deux partenaires Ă  Ă©tĂ© Ă©tudiĂ©e par RMN et confirmĂ©e par chromatographie d'exclusion. Dans une derniĂšre partie, nous avons optimisĂ© les conditions expĂ©rimentales permettant d'obtenir des spectres RMN de qualitĂ© sur la protĂ©ine OpgG malgrĂ© sa masse molĂ©culaire Ă©levĂ©e de 56 kDa. Des rĂ©sultats prometteurs ont Ă©tĂ© obtenus en utilisant des sĂ©quences de type TROSY sur la protĂ©ine OpgG triplement enrichie [2H, 15N, 13C].LILLE2-BU SantĂ©-Recherche (593502101) / SudocSudocFranceF

    Glycan Shielding and Modulation of Hepatitis C Virus Neutralizing Antibodies

    No full text
    Hepatitis C virus (HCV) envelope glycoprotein heterodimer, E1E2, plays an essential role in virus entry and assembly. Furthermore, due to their exposure at the surface of the virion, these proteins are the major targets of anti-HCV neutralizing antibodies. Their ectodomain are heavily glycosylated with up to 5 sites on E1 and up to 11 sites on E2 modified by N-linked glycans. Thus, one-third of the molecular mass of E1E2 heterodimer corresponds to glycans. Despite the high sequence variability of E1 and E2, N-glycosylation sites of these proteins are generally conserved among the seven major HCV genotypes. N-glycans have been shown to be involved in E1E2 folding and modulate different functions of the envelope glycoproteins. Indeed, site-directed mutagenesis studies have shown that specific glycans are needed for virion assembly and infectivity. They can notably affect envelope protein entry functions by modulating their affinity for HCV receptors and their fusion activity. Importantly, glycans have also been shown to play a key role in immune evasion by masking antigenic sites targeted by neutralizing antibodies. It is well known that the high mutational rate of HCV polymerase facilitates the appearance of neutralization resistant mutants, and occurrence of mutations leading to glycan shifting is one of the mechanisms used by this virus to escape host humoral immune response. As a consequence of the importance of the glycan shield for HCV immune evasion, the deletion of N-glycans also leads to an increase in E1E2 immunogenicity and can induce a more potent antibody response against HCV

    Interaction study between HCV NS5A-D2 and NS5B using 19F NMR

    No full text
    The non structural protein 5A (NS5A) regulates the replication of the hepatitis C viral RNA through a direct molecular interaction of its domain 2 (NS5A-D2) with the RNA dependent RNA polymerase NS5B. Because of conflicting data in the literature, we study here this molecular interaction using fluorinated versions of the NS5A-D2 protein derived from the JFH1 Hepatitis C Virus strain. Two methods to prepare fluorine-labelled NS5A-D2 involving the biosynthetic incorporation of a F-19-tryptophan using 5-fluoroindole and the posttranslational introduction of fluorine by chemical conjugation of 2-iodo-N-(trifluoromethyl)acetamide with the NS5A-D2 cysteine side chains are presented. The dissociation constants (K-D) between NS5A-D2 and NS5B obtained with these two methods are in good agreement, and yield values comparable to those derived previously from a surface plasmon resonance study. We compare benefits and limitations of both labeling methods to study the interaction between an intrinsically disordered protein and a large molecular target by F-19 NMR

    Graphical interpretation of Boolean operators for protein NMR assignments

    No full text
    We have developed a graphics based algorithm for semi-automated protein NMR assignments. Using the basic sequential triple resonance assignment strategy, the method is inspired by the Boolean operators as it applies "AND"-, "OR"- and "NOT"-like operations on planes pulled out of the classical three-dimensional spectra to obtain its functionality. The method's strength lies in the continuous graphical presentation of the spectra, allowing both a semi-automatic peaklist construction and sequential assignment. We demonstrate here its general use for the case of a folded protein with a well-dispersed spectrum, but equally for a natively unfolded protein where spectral resolution is minimal

    Sandwich-ELISE NMR: Reducing the sample volume of NMR samples

    No full text
    We present Sandwich-ELISE, a concatenated version of our previously proposed Experimental LIquid SEaling (ELISE) protocol, in which an aqueous sample is effectively sealed by the addition of a small layer of mineral oil, or, alternatively, a chloroform sample was sealed by a water layer. With Sandwich-ELISE, a triple layered geometry composed of deuterated chloroform/aqueous buffer/mineral oil can be used to limit the sample to the active coil volume, effectively replacing the popular Shigemi tubes. Importantly, this procedure is readily applicable to smaller diameter tubes, for which no Shigemi tubes are available. We further present spectra of a 1 microl protein sample sandwiched between the chloroform and Nujol phases in a 1mm tube, demonstrating thereby that the volume of the aqueous phase of interest can be reduced even further

    Hepatitis E Virus RNA‐Dependent RNA Polymerase is Involved in RNA Replication and Infectious Particle Production

    Get PDF
    International audienceBackground and Aims: Hepatitis E virus (HEV) is one of the most common causes of acute hepatitis worldwide. Its positive-strand RNA genome encodes three open reading frames (ORF). ORF1 is translated into a large protein composed of multiple domains and known as the viral replicase. The RNA-dependent RNA polymerase (RdRp) domain is responsible for the synthesis of viral RNA.Approach and Results: Here, we identified a highly conserved α-helix located in the RdRp thumb subdomain. Nuclear magnetic resonance demonstrated an amphipathic α-helix extending from amino acids 1628 to 1644 of the ORF1 protein. Functional analyses revealed a dual role of this helix in HEV RNA replication and virus production, including assembly and release. Mutations on the hydrophobic side of the amphipathic α-helix impaired RNA replication and resulted in the selection of a second-site compensatory change in the RdRp palm subdomain. Other mutations enhanced RNA replication but impaired virus assembly and/or release.Conclusions: Structure-function analyses identified a conserved amphipathic α-helix in the thumb subdomain of the HEV RdRp with a dual role in viral RNA replication and infectious particle production. This study provides structural insights into a key segment of the ORF1 protein and describes the successful use of reverse genetics in HEV, revealing functional interactions between the RdRp thumb and palm subdomains. On a broader scale, it demonstrates that the HEV replicase, similar to those of other positive-strand RNA viruses, is also involved in virus productio
    corecore