15 research outputs found

    Nonlinear Time Series Analysis of Sunspot Data

    Full text link
    This paper deals with the analysis of sunspot number time series using the Hurst exponent. We use the rescaled range (R/S) analysis to estimate the Hurst exponent for 259-year and 11360-year sunspot data. The results show a varying degree of persistence over shorter and longer time scales corresponding to distinct values of the Hurst exponent. We explain the presence of these multiple Hurst exponents by their resemblance to the deterministic chaotic attractors having multiple centers of rotation.Comment: 10 pages, 6 figures, accepted for publication in Solar Physics, journal style corrections done in this versio

    Low-Energy Proton Testing Methodology

    Get PDF
    Use of low-energy protons and high-energy light ions is becoming necessary to investigate current-generation SEU thresholds. Systematic errors can dominate measurements made with low-energy protons. Range and energy straggling contribute to systematic error. Low-energy proton testing is not a step-and-repeat process. Low-energy protons and high-energy light ions can be used to measure SEU cross section of single sensitive features; important for simulation

    Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    Get PDF

    Relationship between Solar Energetic Particles and Properties of Flares and CMEs: Statistical Analysis of Solar Cycle 23 Events

    No full text
    A statistical analysis of the relationship between solar energetic particles (SEPs) and properties of solar flares and coronal mass ejections (CMEs) is presented. SEP events during Solar Cycle 23 are selected that are associated with solar flares originating in the visible hemisphere of the Sun and that are at least of magnitude M1. Taking into account all flares and CMEs that occurred during this period, the probability for the occurrence of an SEP event near Earth is determined. A strong rise of this probability is observed for increasing flare intensities, more western locations, higher CME speeds, and halo CMEs. The correlations between the proton peak flux and these solar parameters are derived for a low (> 10 MeV) and high (> 60 MeV) energy range excluding any flux enhancement due to the passage of fast interplanetary shocks. The obtained correlation coefficients are 0.55±0.07 (0.63±0.06) with flare intensity, and 0.56±0.08 (0.40±0.09) with CME speed for E>10 MeV (E>60 MeV). For both energy ranges, the correlations with flare longitude and CME width are very weak or non-existent. Furthermore, the occurrence probabilities, correlation coefficients, and mean peak fluxes are derived in multi-dimensional bins combining the aforementioned solar parameters. The correlation coefficients are also determined in different proton energy channels ranging from 5 to 200 MeV. The results show that the correlation between the proton peak flux and the CME speed decreases with energy, while the correlation with the flare intensity shows the opposite behaviour. Furthermore, the correlation with the CME speed is stronger than the correlation with the flare intensity below 15 MeV and becomes weaker above 20 MeV. When the enhancements in the flux profiles due to interplanetary shocks are not excluded, only a small but not very significant change is observed in the correlation coefficients between the proton peak flux below 7 MeV and the CME speed

    Dynamics of the Earth's particle radiation environment

    No full text
    The physical processes affecting the dynamics of the Earth's particle radiation environment are reviewed along with scientific and engineering models developed for its description. The emphasis is on models that are either operational engineering models or models presently under development for this purpose. Three components of the radiation environment, i.e., galactic cosmic rays (GCRs), solar energetic particles (SEPs) and trapped radiation, are considered separately. In the case of SEP models, we make a distinction between statistical flux/fluence models and those aimed at forecasting events. Models of the effects of particle radiation on the atmosphere are also reviewed. Further, we summarize the main features of the models and discuss the main outstanding issues concerning the models and their possible use in operational space weather forecasting. We emphasize the need for continuing the development of physics-based models of the Earth's particle radiation environment, and their validation with observational data, until the models are ready to be used for nowcasting and/or forecasting the dynamics of the environment
    corecore