1,507 research outputs found
A Semi-analytical Model for Remote Sensing Retrieval of Suspended Sediment Concentration in the Gulf of Bohai, China
published_or_final_versio
Recommended from our members
Monitoring on the performance of temporary props using wireless strain sensing
Although temporary props have been extensively used in underground support systems, their actual performance is poorly understood, resulting in potentially conservative and over-engineered design. This paper presents the performance monitoring of 4 temporary props in an urban construction site using a newly developed wireless strain sensor node featuring a 24-bit ADC. For each prop, 6 strain gauges and 3 temperature sensors were directly attached onto the prop surface using super glue, and then connected to a wireless strain sensor node mounted in the middle span. Each sensor node transmitted both monitoring data and network diagnostic messages in near-real-Time over an IPv6-based (6LoWPAN) wireless mesh sensor network. The data were also stored locally at each node on a micro SD card. Extensive testing and calibration was undertaken in the laboratory to ensure that the system functioned as expected. The prop loads are presented without correction for temperature effects and compared with the design loads. The monitoring data reveal the development of loads in temporary props during excavation, the formation of the basement and the extraction of the props. The network performance characteristics in terms of message reception ratio and network topology evolution are also highlighted and discussed
Recommended from our members
Wireless sensor monitoring of Paddington Station Box Corner
This paper presents the real performance of three diaphragm wall panels on the southeast corner of Paddington Station Box during excavation, monitored using a wireless sensor network. In total, 15 LPDT displacement sensors, 12 tilt sensors, 13 relay nodes and a gateway were deployed at three different stages. Each wireless sensor node is programmed with Contiki OS using the in-built IPv6-based network layer (6LoWPAN/RPL) for link-local addressing and routing, and ContikiMAC at the medium access control (MAC) layer for radio duty cycling. Extensive testing and calibration was carried out in the laboratory to ensure that the system functioned as expected. Wireless tilt and displacement sensors were installed to measure the inclination, angular distortion and relative displacement of these corner panels at three different depths. The monitoring data reveal that the corner produced a stiffening effect on the station box, which might result in a breakdown of plane strain conditions. The network performance characteristics (e.g. message reception ratio and network topology status) and challenges are also highlighted and discussed
Photosynthesis responses of endemic shrubs of Taklimakan Desert to adverse temperature, humidity and radiation
Under the native habitat conditions, the seasonal gas exchange characteristics of two natural endemic plant species, Calligonum taklimakanensis B.R. Pan & GM. Shen and Tamarix taklamakanensis M.T. Liu, which are located in the hinterland of the Taklimakan Desert, are measured and compared by Li-6400 photosynthesis system. The results indicate that temperature (degrees C), solar radiation (PAR), soil water content (SWC), and other environmental factors have obvious seasonal variations and the gas exchange characteristics of two plants have different changes in different growing seasons. For C. taklimakanensis, both in July and September, its daily changes of net photosynthetic rate tend to be obvious double peak curve, but in July its peak appeared earlier. Besides its maximum net photosynthetic rate (P-max), apparent quantum efficiency (Phi), range of effective photosynthetic radiation significantly less than that in September. Moreover, its water use efficiency (WUE) in July was also lower than that in September due to the higher transpiration rate (T-r). For T. taklamakanensis, although its daily change of net photosynthetic rate is a single peak curve in September, its peak time has not changed, and except that its WUE is higher in September like C. taklimakanensis, the maximum net photosynthetic rate (P-max), apparent quantum efficiency (Phi), light saturation point, and range of effective photosynthetic radiation has not changed or slightly declined. That is to say C. taklimakanensis select a season that habitat was better (like September) to progress relative effectively photosynthesis accumulation, in contrast, T. taklamakanensis still keep a relatively stable photosynthesis rate in different growth seasons. The difference of gas exchange characteristics of the two plants in different seasons shows that adaptation strategies of the two plants to extreme conditions in desert are different. Besides, both the higher photosynthetic accumulation rate and the higher water use efficiency in September also indicate that these two endemic desert shrubs possess the abilities and strategies to make the best of limited natural resources
Physiological response of natural C-taklimakanensis BRPan et GMShen to unconfined groundwater in the hinterland of the Taklimakan Desert
Calligonum. taklimakanensis B.R.Pan et G.M.Shen is an indigenous species that grows in the Taklimakan Desert. This study shows the relationship between C. taklimakanensis B.R.Pan et G.M.Shen and water conditions in the hinterland of the desert. The results show that: (1) Depth of water table is an important factor that affects water potential (Psi(p), Psi(A)), osmotic potential (Psi(sat), Psi(tlp)), relative water content (RWCtlp, ROWCtlp), and transpiration rate. (2) The degree of mineralization has a significant impact on the water potential of plants. A high degree of mineralization can strongly reduce plant productivity. (3) C. taklimakanensis B.R.Pan et G.M.Shen reduces the temperature of assimilation sticks through a high transpiration rate and maintains relatively high water content to adapt to drought and hot weather conditions in the hinterland of the desert. In addition, C. taklimakanensis B.R.Pan et G.M.Shen adapts to the water status in the desert through self-regulation or even sacrificing productivity
Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development
published_or_final_versio
Cold atmospheric plasma induces ATP-dependent endocytosis of nanoparticles and synergistic U373MG cancer cell death
Gold nanoparticles (AuNP) have potential as both diagnostic and therapeutic vehicles. However, selective targeting and uptake in cancer cells remains challenging. Cold atmospheric plasma (CAP) can be combined with AuNP to achieve synergistic anti-cancer cytotoxicity. To explore synergistic mechanisms, we demonstrate both rate of AuNP uptake and total amount accumulated in U373MG Glioblastoma multiforme (GBM) cells are significantly increased when exposed to 75 kV CAP generated by dielectric barrier discharge. No significant changes in the physical parameters of AuNP were caused by CAP but active transport mechanisms were stimulated in cells. Unlike many other biological effects of CAP, long-lived reactive species were not involved, and plasma-activated liquids did not replicate the effect. Chemical effects induced by direct and indirect exposure to CAP appears the dominant mediator of enhanced uptake. Transient physical alterations of membrane integrity played a minor role. 3D-reconstruction of deconvoluted confocal images confirmed AuNP accumulation in lysosomes and other acidic vesicles, which will be useful for future drug delivery and diagnostic strategies. Toxicity of AuNP significantly increased by 25-fold when combined with CAP. Our data indicate that direct exposure to CAP activates AuNP-dependent cytotoxicity by increasing AuNP endocytosis and trafficking to lysosomes in U373MG cells
CDAL: A Scalable Scheme for Digital Resource Reorganization
In many circumstances, including e-learning, there is a need to reorganize digital resources, scattered in many places, into a coherently accessible repository. This paper introduces a methodology to do the job efficiently. Specifically, the resources that the scheme needs to handle presents the following challenges, 1) mass, 2) various data types, 3) coming out continuously, i.e., the scheme must support incremental reorganization. 4) usually existing with its own directory structures. We describe the scheme in detail, together with considerations for trade-offs. The following features are highlighted: 1) the reorganization of scattered resources is modeled as a tree-merging process., which results in a good trade-off between efficiency and quality. 2) hierarchical storage arrangement with a uniform index at each level ensures scalability. As an application of the scheme, CDAL (Chinese Digital Assets Library) is briefed, which is a TB-scale archive of digital resources on the Web.Computer Science, Artificial IntelligenceComputer Science, Interdisciplinary ApplicationsComputer Science, Theory & MethodsSCI(E)CPCI-S(ISTP)
Localized-Surface-Plasmon Enhanced the 357 nm Forward Emission from ZnMgO Films Capped by Pt Nanoparticles
The Pt nanoparticles (NPs), which posses the wider tunable localized-surface-plasmon (LSP) energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors
Liquid marble-derived solid-liquid hybrid superparticles for CO2 capture.
The design of effective CO2 capture materials is an ongoing challenge. Here we report a concept to overcome current limitations associated with both liquid and solid CO2 capture materials by exploiting a solid-liquid hybrid superparticle (SLHSP). The fabrication of SLHSP involves assembly of hydrophobic silica nanoparticles on the liquid marble surface, and co-assembly of hydrophilic silica nanoparticles and tetraethylenepentamine within the interior of the liquid marble. The strong interfacial adsorption force and the strong interactions between amine and silica are identified to be key elements for high robustness. The developed SLHSPs exhibit excellent CO2 sorption capacity, high sorption rate, long-term stability and reduced amine loss in industrially preferred fixed bed setups. The outstanding performances are attributed to the unique structure which hierarchically organizes the liquid and solid at microscales
- …
