1,595 research outputs found
Genes Underlying Positive Influence Of Prenatal Environmental Enrichment And Negative Influence Of Prenatal Earthquake Simulation And Corrective Influence Of Chinese Herbalmedicine On Rat Offspring: Irf7 And Ninj2
Background: Prenatal environmental enrichment (EE) has been proven to positively affect but prenatal stress negatively influence the physiological and psychological processes in animals, whose trans-generational genetic mechanism remains unclearly defined. We aimed to investigate and find out key genes underlying the positive-negative effects derived from prenatal interventions.Materials and Methods: Pregnant rats were randomized into EE group (EEG), earthquake simulation group (ESG), herbal group (HG) received herbal supplements in feed after earthquake simulation, and control group (CG).Results: Light Box Defecation Test (LBDT) showed EEG offspring presented less fecal pellets than CG offspring, ESGâs more than CGâs, and HGâs less than ESG (pâs<0.05). Open-field Test (OFT) score of EEG was higher than CG offspring, of ESGâs was lower than CGâs, and HGâs higher than ESGâs. Irf7 and Ninj were screened, which were up-regulated in EEG, down-regulated in ESG (FC<0.5), and were neutralized in HG. Prenatal EE could positively promote the nervous system development, prenatal earthquake simulation could retard the nervous system development and Chinese herbal remedy (JKSQW) which could correct the retardation.Conclusion: The negative-positive prenatal effect could contribute to altered gene expression of Irf7 and Ninj2 which also could play a key role in the improving function of JKSQWfor the kidneys.Keywords: Prenatal stress; Earthquake simulation; Light Box Defecation Test; Open-field Test; Irf7; Ninj
Immunosuppressive role of fibrinogen-like protein 2 (FGL2) in CD8+regulatory T cells-mediated long-term graft survival
International audienc
Aharonov-Bohm interference in topological insulator nanoribbons
Topological insulators represent novel phases of quantum matter with an
insulating bulk gap and gapless edges or surface states. The two-dimensional
topological insulator phase was predicted in HgTe quantum wells and confirmed
by transport measurements. Recently, Bi2Se3 and related materials have been
proposed as three-dimensional topological insulators with a single Dirac cone
on the surface and verified by angle-resolved photoemission spectroscopy
experiments. Here, we show unambiguous transport evidence of topological
surface states through periodic quantum interference effects in layered
single-crystalline Bi2Se3 nanoribbons. Pronounced Aharonov-Bohm oscillations in
the magnetoresistance clearly demonstrate the coverage of two-dimensional
electrons on the entire surface, as expected from the topological nature of the
surface states. The dominance of the primary h/e oscillation and its
temperature dependence demonstrate the robustness of these electronic states.
Our results suggest that topological insulator nanoribbons afford novel
promising materials for future spintronic devices at room temperature.Comment: 5 pages, 4 figures, RevTex forma
Determination and Distribution Study of Pogostone in Rat Tissues by Ultra-Fast Liquid Chromatography
Purpose: To develop and validate a rapid, sensitive and reliable ultra-fast liquid chromatography (UFLC) method with photodiode array (PDA) detection for the determination of pogostone (PO) in rat tissues using honokiol as internal standard (IS).Methods: Rats were randomly divided into two groups (intravenous administration group and oral administration group) and given of a single dose of 10 mg/kg PO by intravenous administration and oral administration, respectively. After intravenous injection, the rats were sacrificed at 15, 60 and 360 min, while rats, after oral administration, were euthanasized at 30, 90 and 360 min, respectively. For the analysis of the preparation, optimal chromatographic conditions were determined using Acquity UPLC BEH C18 column with acetonitrile-water containing 0.1 % formic acid (55:45, v/v) as the mobile phase, at a flow rate of 400 ΌL/min. UV detection wavelength was set at 310 nm with temperature maintained at 30 °C.Results: Good linear relationship of calibration curve (r > 0.9984) was achieved over the range of 0.1 - 40 Όg/mL for all the tissue samples. The limit of quantification (LOQ) and limit of detection (LOD) were 0.1 and 0.05 Όg/mL, respectively. This method proved to have good precision, accuracy, stability, extraction recovery and matrix effect for tissue distribution studies of PO in rats.Conclusion: The developed method is suitable for tissue distribution studies in rats following intravenous and oral administration of PO at a dose of 10 mg/kg.Keywords: Ultra-fast liquid chromatography, Tissue distribution, Pogostone, Honokiol, Rat
Monosaccharide composition of polysaccharides of borojo from tropical rain forest
2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Facile Synthesis of High Quality Graphene Nanoribbons
Graphene nanoribbons have attracted attention for their novel electronic and
spin transport properties1-6, and because nanoribbons less than 10 nm wide have
a band gap that can be used to make field effect transistors. However,
producing nanoribbons of very high quality, or in high volumes, remains a
challenge. Here, we show that pristine few-layer nanoribbons can be produced by
unzipping mildly gas-phase oxidized multiwalled carbon nanotube using
mechanical sonication in an organic solvent. The nanoribbons exhibit very high
quality, with smooth edges (as seen by high-resolution transmission electron
microscopy), low ratios of disorder to graphitic Raman bands, and the highest
electrical conductance and mobility reported to date (up to 5e2/h and 1500
cm2/Vs for ribbons 10-20 nm in width). Further, at low temperature, the
nanoribbons exhibit phase coherent transport and Fabry-Perot interference,
suggesting minimal defects and edge roughness. The yield of nanoribbons was ~2%
of the starting raw nanotube soot material, which was significantly higher than
previous methods capable of producing high quality narrow nanoribbons1. The
relatively high yield synthesis of pristine graphene nanoribbons will make
these materials easily accessible for a wide range of fundamental and practical
applications.Comment: Nature Nanotechnology in pres
In-Plane Orbital Texture Switch at the Dirac Point in the Topological Insulator Bi2Se3
Topological insulators are novel macroscopic quantum-mechanical phase of
matter, which hold promise for realizing some of the most exotic particles in
physics as well as application towards spintronics and quantum computation. In
all the known topological insulators, strong spin-orbit coupling is critical
for the generation of the protected massless surface states. Consequently, a
complete description of the Dirac state should include both the spin and
orbital (spatial) parts of the wavefunction. For the family of materials with a
single Dirac cone, theories and experiments agree qualitatively, showing the
topological state has a chiral spin texture that changes handedness across the
Dirac point (DP), but they differ quantitatively on how the spin is polarized.
Limited existing theoretical ideas predict chiral local orbital angular
momentum on the two sides of the DP. However, there have been neither direct
measurements nor calculations identifying the global symmetry of the spatial
wavefunction. Here we present the first results from angle-resolved
photoemission experiment and first-principles calculation that both show,
counter to current predictions, the in-plane orbital wavefunctions for the
surface states of Bi2Se3 are asymmetric relative to the DP, switching from
being tangential to the k-space constant energy surfaces above DP, to being
radial to them below the DP. Because the orbital texture switch occurs exactly
at the DP this effect should be intrinsic to the topological physics,
constituting an essential yet missing aspect in the description of the
topological Dirac state. Our results also indicate that the spin texture may be
more complex than previously reported, helping to reconcile earlier conflicting
spin resolved measurements
Strain-induced partially flat band, helical snake states, and interface superconductivity in topological crystalline insulators
Topological crystalline insulators in IV-VI compounds host novel topological
surface states consisting of multi-valley massless Dirac fermions at low
energy. Here we show that strain generically acts as an effective gauge field
on these Dirac fermions and creates pseudo-Landau orbitals without breaking
time-reversal symmetry. We predict the realization of this phenomenon in IV-VI
semiconductor heterostructures, due to a naturally occurring misfit dislocation
array at the interface that produces a periodically varying strain field.
Remarkably, the zero-energy Landau orbitals form a flat band in the vicinity of
the Dirac point, and coexist with a network of snake states at higher energy.
We propose that the high density of states of this flat band gives rise to
interface superconductivity observed in IV-VI semiconductor multilayers at
unusually high temperatures, with non-BCS behavior. Our work demonstrates a new
route to altering macroscopic electronic properties to achieve a partially flat
band, and paves the way for realizing novel correlated states of matter.Comment: Accepted by Nature Physic
Nonlinear spectral-like schemes for hybrid schemes
In spectral-like resolution-WENO hybrid schemes, if the switch function takes more grid points as discontinuity points, the WENO scheme is often turned on, and the numerical solutions may be too dissipative. Conversely, if the switch function takes less grid points as discontinuity points, the hybrid schemes usually are found to produce oscillatory solutions or just to be unstable. Even if the switch function takes less grid points as discontinuity points, the final hybrid scheme is inclined to be more stable, provided the spectral-like resolution scheme in the hybrid scheme has moderate shock-capturing capability. Following this idea, we propose nonlinear spectral-like schemes named weighted group velocity control (WGVC) schemes. These schemes show not only high-resolution for short waves but also moderate shock capturing capability. Then a new class of hybrid schemes is designed in which the WGVC scheme is used in smooth regions and the WENO scheme is used to capture discontinuities. These hybrid schemes show good resolution for small-scales structures and fine shock-capturing capabilities while the switch function takes less grid points as discontinuity points. The seven-order WGVC-WENO scheme has also been applied successfully to the direct numerical simulation of oblique shock wave-turbulent boundary layer interaction
- âŠ