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In spectral-like resolution-WENO hybrid schemes, if the switch function takes more grid points as discontinuity points, the 
WENO scheme is often turned on, and the numerical solutions may be too dissipative. Conversely, if the switch function takes 
less grid points as discontinuity points, the hybrid schemes usually are found to produce oscillatory solutions or just to be   
unstable. Even if the switch function takes less grid points as discontinuity points, the final hybrid scheme is inclined to be 
more stable, provided the spectral-like resolution scheme in the hybrid scheme has moderate shock-capturing capability. Fol-
lowing this idea, we propose nonlinear spectral-like schemes named weighted group velocity control (WGVC) schemes. These 
schemes show not only high-resolution for short waves but also moderate shock capturing capability. Then a new class of hy-
brid schemes is designed in which the WGVC scheme is used in smooth regions and the WENO scheme is used to capture 
discontinuities. These hybrid schemes show good resolution for small-scales structures and fine shock-capturing capabilities 
while the switch function takes less grid points as discontinuity points. The seven-order WGVC-WENO scheme has also been 
applied successfully to the direct numerical simulation of oblique shock wave-turbulent boundary layer interaction. 
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Shock wave-turbulent boundary layer interaction (SWTBLI) 
problems, characterized by turbulences and shockwaves, are 
archetypical examples of multi-scales problems with dis-
continuities. Because of the importance and widely applica-
tions of these problems [1], direct numerical simulations 
(DNS) of SWTBLI problems have been required continual-
ly.  

The multi-scales phenomena in such problems requires 
the numerical method to be high order and high resolution. 
To be reliable, a DNS of such flows must resolve these var-
ious scales, particularly smaller ones with accuracy in both 
amplitude and phase [2]. Concerning high-order and high- 
resolution schemes, there have been upwind compact 
schemes [3,4], dispersion-relation preserving schemes [5] 

and wavenumber-extended finite difference schemes [6]. 
These schemes are all designed for high resolution of short 
waves with respect to the computational grid. Another high- 
resolution schemes are explicit/compact central schemes [7] 
which have no dissipation resulted in providing spurious 
solutions and leading to inevitable stability problems [8,9]. 

However, these methods above are limited to compute 
flows without discontinuities. To capture shocks, treating 
these methods nonlinearly is required [4]. For flows with 
discontinuities, WENO [10] schemes which have been 
demonstrated very promising shock-capturing capabilities 
and high order accuracy are widely used. However, numer-
ical tests also indicate that classical WENO schemes are 
usually not optimal for computing turbulent flows or aero- 
acoustic fields because they are too diffusive for short 
waves [11].  
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The observations presented above suggest that, a natural 
choice is to combine the ENO/WENO scheme with another 
scheme with spectral-like resolution to form a so-called 
spectral-like resolution-WENO hybrid scheme [2]. Adams 
and Shariff [12] have developed hybrid schemes that rely on 
the coupling of a nonconservative compact upwind scheme 
with a shock-capturing ENO scheme that is turned on 
around discontinuities. Pirozzoli [13], following ref. [12], 
derived a hybrid compact-WENO scheme in which a con-
servative compact scheme was coupled with a WENO 
scheme to make the overall scheme conservative. Ren et al. 
[11] improved the hybrid compact-WENO scheme [11] by 
removing the abrupt switch between the compact and the 
shock-capturing schemes through the use of a weighted av-
erage of the two schemes. There are still other spectral-like 
resolution-WENO hybrid schemes [2,14].  

However, there are still problems with switch functions 
in these hybrid schemes. Take the switch function devel-
oped by Ren et al. [11] as an example. It was found that this 
switch function may mistake some points in smooth waves 
as discontinuity points, particularly in high-wavenumber 
waves [15]. Thus a problem arises. That is, if the switch 
function takes more grid points as discontinuity points, the 
WENO scheme is often turned on, and the numerical solu-
tion may be too dissipative. Conversely, if the switch func-
tion takes less grid points as discontinuity points, the hybrid 
schemes usually are found to produce oscillatory solutions 
or just to be unstable. 

Here we propose nonlinear spectral-like schemes with 
moderate shock capturing capabilities to try to solve this 
problem. Thus even the switch function takes less grid 
points as discontinuity points, the new nonlinear spectral- 
like schemes still be able to withstand this situation because 
of their moderate shock capturing capabilities. These 
schemes are based on the group velocity control (GVC) [16, 
17] theory. This concept is proposed and used to explain the 
phenomenon of oscillations near the discontinuities and 
capture discontinuities [16,17]. The main ideas are that a 
discontinuity can be treated as a linear combination of long 
and short waves. Oscillation productions in numerical solu-
tion around discontinuities are due to non-uniform group 
velocity of wavelets. Thus to control group velocities of 
wavelets could be used to reduce oscillation productions 
around discontinuities. GVC schemes does be found nu-
merically to have a ability of reducing many oscillations 
near discontinuities while there still a bit left [17,18].  

In this paper, firstly, by following the GVC theory, we 
propose a weighted methodology of constructing GVC sch- 
emes. A new class of schemes named weighted group ve-
locity control (WGVC) schemes is deduced. Then we pay 
our main attention to show WGVC schemes have high-  
order and high-resolution property, not to demonstrate their 
moderate shock-capturing capabilities. Finally, a new class 
of hybrid schemes is designed in which the WGVC scheme 
is used in smooth regions while the WENO scheme is used 

to capture discontinuities. The final hybrid schemes show 
good resolution for small-scales structures and fine shock- 
capturing capabilities. And the seven-order WGVC-WENO 
scheme has also been applied successfully to the DNS of 
oblique SWTBLI.  

1  Group velocity of linear finite difference 
schemes and WENO schemes 

Trefethen [19] surveyed and illustrated the relevance of 
group velocity to the behavior of finite difference models of 
time-partial differential equations. For more details on the 
WENO scheme, refer elsewhere [10]. Here we briefly list 
these common sense knowledge for completeness.  

1.1  Group velocity of linear finite difference schemes 

Consider the one-dimensional linear advection equation on 
an infinite domain with a sinusoidal initial condition with 
wavenumber , 

 i
00,  ,  ,ˆ( ,0) e xu u

c x
t x

u x u  
     

 
  (1) 

where i 1   and we assume c=const>0.  
Theoretically, applying separation of variables, it is clear 

that the exact solution to eq. (1) is 

 i ( )
0 .ˆ( , ) e x ctu x t u    (2) 

In practice, eq. (1) is discretized in the spatial domain on 
a uniform grid with nodes given by xj=jx, 0,..., ,j N  

where x is the cell size. To facilitate the discussion, let 
operator L denote the approximation of the spatial differen-

tial, 
( )
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 Here we consider an explicit, linear 

finite difference operator, that is, 
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where sl and sr  are arbitrary positive integers and al, 

, ,l sl sr      are constant coefficients. Then the 

semi-discretized form of eq. (1) by the method of lines 
yields a system of ordinary differential equations 
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where uj=u(xj, t). Then the exact solution to the 
semi-discrete equation is 
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where i( )1
( ) e .

i

sr
l x

e l
l sl

K a
x

 




   For convenience we in-

troduce the reduced wavenumber x   [7] and the re-

duced modified wavenumber   ( )eK x     which is a 

complex number    Re i Im .    Then we can rewrite 

eq. (5) as: 

 
i ( Re( ) / )Im( ) /

0 .ˆ( , ) e e j
j

x ctct xu x t u      (6) 

Im( )  contains information on the spectral dissipation 
property of the scheme. Re( )  contains information on 

the spectral dispersion property of the scheme. Details can 
be found in refs. [2,4,19].  

In ref. [16], group velocity of a this linear difference 

scheme is defined  d
Re( )

d
  for constant c. And a new 

classification for the linear difference operator L is intro-

duced, that is, the operator L: with  d
Re( ) 1,

d
   

0      is a slow operator, denoted by Ls; with 

 d
Re( ) 1

d
  , 0      is a fast operator; denoted by 

Lf; with 0 0   , 00     ,  d
Re( ) 1

d
   and 

0     ,  d
Re( ) 1

d
   is a mixed operator, denot-

ed by Lm. 
According to the classification, a fast operator tends to 

propagate a wave in a faster speed than the correct speed in 
the semi-discrete evolution. A slow operator tends to prop-
agate a wave in a slower speed than the correct speed in the 
semi-discrete evolution. A mixed operator shares the char-
acters of both fast and slow schemes. 

1.2  WENO schemes [10,20] 

In the WENO method, there are r  candidate stencils, each 
containing r  grid points. The one most upwind candidate 
stencil ranges over mesh point indices j(r1) to j, while the 
fully downwind candidate stencil ranges over j to j+(r1), 
and the other candidate stencils fall in between. The final 
numerical approximation becomes  
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Specifically, 1/2,
ˆ

j lf   are rth-order accurate polynomial 

interplant evaluated at xj+1/2. The weights are defined by 
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The small positive number  prevents division by zero, 
and p is used to increase or decrease WENO adaptation 
sensitivity. Details can be found elsewhere [10,20].  

2  WGVC 

2.1  Two base schemes: mixed and slow operator 

We need a fast/mixed scheme and a slow scheme as two 
base schemes which are used in the two sides of a disconti-
nuity respectively.  

In this paper, we use the following 2(r1) order operator 
with a free parameter 
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to obtain the mixed or slow operator. And its numerical flux 
approaches hj+1/2=h(xj+1/2) is 
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where the h(x) is implicitly defined as in ref. [21],  
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It’s evident that the scheme (11) shows different dissipa-
tion and dispersion properties when  chooses different 
value. According to the GVC theory, a “fast/mixed type” 

scheme 1/2
ˆ ( )j mf   should be used at the left side of dis-

continuity and a ‘slow type’ scheme 1/2
ˆ ( )j sf   must be at 

the right side of the discontinuity (assume the discontinuity 
propagates towards right) [18]. The two parameters m and 
s will be determined in sect. 2.3. 

Note that the fifth-order linear upwind scheme (LUW5) 
and the seventh-order linear upwind scheme (LUW7) are 
gained when =0. That is to say we can get a 2r1 order 
scheme when we choose =0. Values of al and bl are listed 
in Tables 1 and 2, respectively. And values of 0 are listed 
in Table 3.  

2.2  Weighted methodology for selection of mixed or 
slow operator 

Consider eq. (1), we propose the following weighted meth-
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odology to construct WGVC schemes. 
Firstly, we list the two constraints that WGVC schemes 

should satisfy 

(1) The 2(r1) order mixed scheme 1/2
ˆ ( )j mf   is used 

behind a discontinuity while the 2(r1) order slow scheme 

1/2
ˆ ( )j sf   is used ahead of the discontinuity.  

(2) In the smooth region, the two 2(r1) order schemes 

1/2
ˆ ( )j mf   and 1/2

ˆ ( )j sf   are combined to a scheme of 

2r1 order, that is,    1/2 0 1/2
ˆ ˆ

j m j mf D f    

 1/2
ˆ

s j sD f  . Values of the optimal weights Dm and Ds 

are listed in Table 3.  
Secondly, as shown in Figure 1, the whole stencil of the 

scheme (12) is divided into two disjointed sub-stencils de-
noted by Sm and Ss.  

Calculate the WENO smooth indicators of this two 
sub-stencils m and s following eq. (8). Once there is a 
discontinuity in sub-stencil Ss, this indicates that this point j 
is behind the discontinuity, thus the mixed scheme 

1/2
ˆ ( )j mf   should be used. Similarly, once a discontinuity 

is in the sub-stencil Sm, it means this point is ahead of the 

discontinuity, thus the slow scheme 1/2
ˆ ( )j sf   should be 

used. And the weights of the two sub-stencils are calculated 
by 
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,k
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k

D

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
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k

m s



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
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where k=m or s.  
The  is a small positive number which is introduced to 

prevents division by zero and we use the classical value of 
=106 as in ref. [10]. The power parameter p is set to 2 as 
in ref. [10].  

Thus we obtain WGVC schemes, that is,  

    1/2 1/2 1/2
ˆ ˆ ˆ .j m j m s j sf f f        (16) 

Once there is a discontinuity in sub-stencil Ss, the com-

puted weights 1,m   0,s   thus 1/2
ˆ

jf   1/2
ˆ

jf   

  .m  Once a discontinuity is in the sub-stencil Sm, the com- 

puted weights 0m  , 1s  , then  1/2 1/2
ˆ ˆ

j j sf f   .  

 

Figure 1  (Color online) Weighted methodology for GVC. 

In smooth region,  1/2 1/2 0
ˆ ˆ

j jf f   . The two constraints 

listed above are thus satisfied.  

2.3  Determination of m and s 

There are two methods to determined the two parameters m 
and s. One method is the optimization method [22]. For a 
nonlinear scheme, no analytical formula of the spectral rela-
tions can be obtained. However, using the technique sug-
gested by Pirozzoli [23], the approximate dispersion relation 
(ADR) of the nonlinear scheme still can be obtained. The 
two parameters m and s can be determined numerically. 

The other method is to optimize the shockwave-capturing 
capability using the one-dimensional Sod shock tube prob-
lem [24]. Details can be found elsewhere [18]. In this paper, 
we use this method and values of the two parameters m and 
s are listed in Table 3. 

In critical points, the WGVC scheme reduce to order of 
2(r1) at most while the WENO scheme reduce to order of 
r. And the actual ADRs of these nonlinear schemes are 
shown in sect. 4.1. These results show that WGVC schemes 
have high-resolution for short waves. In additional, since 
the WGVC schemes belong to the GVC schemes. they share 
the moderate shock-capturing capability of the GVC 
scheme [17,18].  

3  Hybrid WGVC-WENO schemes 

In this section, we hybrid the WGVC schemes and the 
WENO schemes of the same order to compute multi-scales 
flows with discontinuities. The reason are as follows. 

The common switch functions usually have artificial pa-
rameters. It is easy to adjust the parameters so as to identify 
less points as discontinuity points. In this situation, the 
WGVC scheme is used in smooth region (containing some 
discontinuity points). Thus the problem ‘the switch function 
may mistake some points in smooth waves as discontinuity 
points, particularly in high-wavenumber waves [15]’ can be 
avoided.  

Any switch function can be used. In this paper we use  
(s)=sq·(q+1q·s) as a switch function, where 1s    

m s

m sD D

 
 and q is a controllable positive integer. Obviously 

the function  remains shares: in smooth regions, ≈0; and 
in discontinuities, ≈1. Extensive numerical tests show the 
best compromise between accuracy and non-oscillatory 
properties is ensured for q=100.  

4  Numerical tests 

In this section, we discuss applications of the WGVC- 
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WENO schemes for some benchmark cases.  
For 1D and 2D compressible fluid problems, the com-

pressible Euler equations are solved in the following man-
ner. The Roe approximation is used for the local character-
istic decomposition at the cell faces while the local 
Lax-Friedriches flux [25] vector splitting is used to split the 
fluxes into a positive and a negative part, that is, 

,  F F F  the new schemes are used in each charac-

teristic fields. After transforming back into physical space, 
the numerical flux is then obtained. The 3rd-order TVD 
Runge-Kutta scheme [25] is used for time integration. All 
computations are carried out with a CFL=0.6. 

For 3D tests, the Navier-Stokes equations are solved di-
rectly. And the Steger-Warming splitting method is applied 
while the eight-order central scheme is used to discrete the 
viscous terms. The others are the same with the 2D tests. 

4.1  The spectral properties of WGVC-WENO schemes  

In order to show the spectral properties of the proposed 
WGVC-WENO schemes, their ADRs are plotted in Figures 
2 and 3. The spectral properties of the classical WENO 
schemes [10,20] are also shown for comparison. From Fig-
ures 2 and 3, it can be readily seen that the WGVC-WENO 
schemes show much better resolution for short waves than 
classical WENO schemes of the same order. 

4.2  Shock-density wave interaction 

Let us now consider the shock density-wave interaction 
problem [25]. The initial conditions are set by a Mach 3 
shock interacting with a perturbed density filed 

 
(3.857, 2.629,10.333), if 0 1,

( , , )
(1 0.2sin(5 ), 0,1), if 10 1.

x
u p

x x


    
       

  

The final time is t=1.8. Note that the “exact” solution is 
obtained numerical by the classical WENO5 scheme [10] on 
a grid of 4001 grid points.  

Figures 4 and 5 give the computed density profiles cal-

culated by WGVC-WENO5 and WGVC-WENO7 respec-
tively. A agreement with the reference solution is obtained. 
Due to less numerical dissipation, the results obtained by 
the WGVC-WENO schemes are heavily improved com-
pared with the WENO schemes of the same order. 

Note that the results of this problem are obtained by the 
WGVC schemes while the WENO schemes are fully turned 
off. It’s obviously the WGVC schemes do share moderate 
shock-capturing capability. 

4.3  Double Mach reflection 

Let us now consider the problem of double Mach reflection 
of a strong shock. A Mach 10 shock wave is reflected form 
a wall with incident angle of 60o. We set up the problem as 
given previously [26]. The computation domain of this 
problem is [0, 0]×[4, 1]. Initially, the shock extends from 
the point x=1/6 at the bottom to the top of the computational 
domain. Along the bottom boundary, at y=0, the region 
from x=0 to x=1/6 is always assigned post-shock conditions, 
whereas a reflecting wall condition is set from x=1/6 to x=4. 
Inflow and outflow boundary conditions are applied at the 
left and right ends of the domain, respectively. The values at 
the top boundary are set to describe the exact motion of a 
Mach 10 shock. For this case, the final simulation time is 
t=0.2.  

Figure 6 shows the density contours obtained by WGVC- 
WENO5 and the classical WENO5 schemes. The contours 
zoomed around the contact discontinuity and Mach stem 
region are given in Figure 7. We can clearly see that 
WGVC-WENO5 resolves better the wave structures near 
the second triple point and predicts a stronger jet near the 
wall. As shown in Figure 7, the WGVC-WENO5 resolves 
considerably finer vertical structure and is less dissipative at 
small scales. 

Figure 8 shows the density contours obtained by WGVC- 
WENO7 and the classical WENO7 schemes. The contours 
zoomed around the contact discontinuity and Mach stemre-
gion are given in Figure 9. We can again clearly see that 
WGVC-WENO7 has almost the same ability to capture  

Table 1  Expressions of al(), l=r, ..., r1 

 a4 a3 a2 a1 a0 a1 a2 a3 

r=3   1/125 2/3+10 10 2/3+5 1/12 
r=4  1/607 3/20+21 3/435 35 3/421 3/20+7 1/60 

Table 2  Expressions of bl(), l=r1), ..., r1 

 b3 b2 b1 b0 b1 b2 b3 

r=3   1/12+4 7/126 7/12+4 1/12  
r=4  1/60+6 2/15 37/60+20 37/6015 2/15+6 1/60 

Table 3  Values of m, s, 0, Dm, Ds 

 m s 0 Dm Ds 

r=3 0.07773 0 1/30 0.42883 0.57117 

r=4 0.02205 0 1/140 0.32394 0.67606 
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Figure 2  (Color online) Spectral properties of WGVC-WENO5, WENO5 and WENO7. 

 

Figure 3  (Color online) Spectral properties of WGVC-WENO7, WENO7 and WENO9. 

 

Figure 4  (Color online) Shock-density-wave interaction: density profile on 201 point grid. 

strong shock waves as the classical WENO scheme while 
the resolution of small scales waves is improved again in 
comparison to the WENO7 scheme.  

These tests above show that WGVC-WENO schemes 
have much better resolution of small scale waves than 
WENO schemes and fine abilities to capture strong shock 
waves. 

4.4  Rayleigh-Taylor instability 

Rayleigh-Taylor instability occurs on an interface between 

fluids with different densities when acceleration is directed 
from the heavy fluid to the light fluid. The instability has a 
fingering nature, with bubbles of light fluid rising into the 
ambient heavy fluid and spikes of heavy fluid falling into 
the light fluid [26]. Previous studies show that there are 
many small scale structures. This can be used as a good 
example to test the resolution of the numerical schemes. We 
set up the problem as given previously [26]. The computa-
tional domain is [0, 1/4]×[0,1]; initially the interface is at 
y=1/2, the heavy fluid with =2 is below in the interface, 
and the light fluid with density =1 is above the interface  
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Figure 5  (Color online) Shock-density-wave interaction: density profile on 201 point grid. 

 

Figure 6  Double-Mach reflection: density profile at t=0.2 on a 961×241 
grid. 30 equally spaced contour lines from =1.5 to =22.9705. 

with the acceleration in the positive y-direction; the pressure 
p is continuous across the interface; a small perturbation is 
given to the velocity component in y direction. Thus, for 
0y<1/2, =2, u=0, p=2y+1, v=0.025c·cos(8x), and for 
1/2y1, =1, u=0, p=y+3/2, v=0.025c·cos(8x), where c 

is the sound speed c p  , and the ratio of specific

heats =5/3. A source term  is added to the right hand side 
of the third equation and v is added to the fourth equation 
of the Euler system. The final simulation time is t=1.95.  

Figure 10 shows the density contours obtained by the 
WGVC-WENO5, WENO5, WGVC-WENO7 and WENO7 
schemes on a 121×481 grid. It is apparent that the WGVC- 
WENO schemes are much less dissipative at small scales 
than the WENO schemes. We can also observe that the 
WGVC-WENO schemes can produce more small vortices 
in the shear layer, indicating that they have better resolution 
to capture small scale structures. Obviously the WGVC- 
WENO schemes resolve considerably finer results in com-
parison to classical WENO schemes.  

4.5  DNS of SWTBLI 

The interaction of a spatially developing adiabatic turbulent 
boundary layer at free-stream mach number M∞=2.3 and 
Reynolds number Re≈6370 (based on the momentum 
thickness of the upstream boundary layer) with an imping-
ing oblique shock wave (=32.43°) is performed by means 
of direct numerical simulation of the compressible Navier-
Stoeks equations. This case is designed to mimic the ex-
periment [27]. 

 

Figure 7  Close-up view of the “blow-up” region of Figure 6. 30 equally spaced contour lines from =1.5 to =22.9705. 
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Figure 8  Double-Mach reflection: density profile at t=0.2 on a 961×241 grid. 30 equally spaced contour lines from =1.5 to =22.9705. 

 

Figure 9  Close-up view of the “blow-up” region of Figure 8. 30 equally spaced contour lines from =1.5 to =22.9705. 

 

Figure 10  Rayleigh-Taylor Instability: density profile on a 121×481 grid. 15 equally spaced contour lines from =0.952269 to =2.14589. 

The computational methodology is as follows: as shown 
in Figure 11, a time-independent laminar compressible 

boundary-layer is imposed in inflow boundary. After a long 
transition, at about x=260 mm, the flow reaches the state of  
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Figure 11  Sketch of the computation. 

 

Figure 12  Mesh spacing in the streamwise direction. 

 

Figure 13  van Driest transformed mean streamwise velocity (a); mean wall pressure (b). 
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Figure 14  (Color online) The shock system (gray shading) is identified as an isosurface of the modified Ducros sensor.Vortical structures are educed as 
isosurfaces of Q-criterion and are colored with the local Mach number. 

developed turbulence. Concurrently, at the top of the com-
putational domain, and x=225 mm, the Rankine-Hugoniot 
relations are reinforced, generating an oblique shock wave. 
A SWTBLI problem is formed as the deduced shock wave 
impinges the turbulent boundary layer at about x=330 mm. 
The inviscid flux is discretized by the proposed WGVC- 
WENO7 scheme. 

The grid is 2534×180×256. The computational domain is 
partitioned into eight zones in the streamwise direction. The 
mesh spacing in the streamwise direction is shown in Figure 
12. In wall normal direction, boundary grid is used and the 
grid is equally spaced in the spanwise direction. In wall 
units (based on the boundary layer properties taken at the 
reference point x=280 mm) the mesh spacings in the 
streamwise, wall normal, and spanwise directions are 

min min 3.80 0.57 4.21.x y z          

Figure 13(a) shows the van Driest velocity profile at the 
reference point of the upstream boundary layer, that is, 
x=280 mm. We can see the log region can be described by 

(1 ) log( ) ,y C   with =0.4 and C=5.5. The streamwise 

wall mean pressure profile is given in Figure 13(b) which 
shows good quantitative agreement with the experimental 
results, in which x#=(xximp)/L where ximp is the mean loca-
tion of the extension of the impinging shock to the wall and 
L=ximpxsep in which xsep is the mean boundary layer separa-
tion location. Note the DNS data of Pirozzoli et al. [28] 
whose conditions are sufficiently close to the experiment we 
have selected are also presented. 

In Figure 14, the shock system (gray shading) is identi-
fied as an isosurface of the modified Ducros sensor [29]. 
Vortical structures are educe as isosurfaces of Q-criterion 
[30] and are colored with the local mach number. We show 
two instantaneous flow fields at two different times. We can 
see that the reflected shock experiences spanwise perturba-
tions which are well captured using the proposed WGVC- 
WENO7 scheme. 

5  Conclusions 

One problem in spectral-like resolution-WENO hybrid 
schemes is: if the switch function takes more grid points as 
discontinuity points, the WENO scheme is often turned on, 
and the numerical solutions may be too dissipative. Con-
versely, if the switch function takes less grid points as dis-
continuity points, the hybrid schemes usually are found to 
produce oscillatory solution or just to be unstable. 

To correct this problem we suggest the following method. 
If the spectral-like resolution scheme in the hybrid scheme 
has moderate shock-capturing capability, the final hybrid 
scheme is inclined to be more stable, even the switch func-
tion takes less grid points as discontinuity points.  

Following this idea, we propose a new class of nonlinear 
schemes named WGVC schemes. These schemes show 
high-resolution for short waves and moderate shock-cap- 
turing capability. Then a new class of hybrid schemes is 
designed in which WGVC scheme is used in the smooth 
region and WENO scheme is used to capture discontinuities. 
These hybrid schemes show good resolution for small- 
scales structures and fine shock-capturing capabilities. The 
seven-order WGVC-WENO scheme has also been applied 
successfully to the DNS of oblique SWTBLI.  
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