1,686 research outputs found

    Decision Making in Crowdfunding Under Risk Analysis

    Get PDF
    Crowdfunding is an emerging international financial activity often performed via internet mediated platform. With the rapid growth of this financial system, rising risks would influence participant’s decision making. In this study, we examine the process of a typical crowdfunding activity, pre-ordering pledging as well as its coming risks. Based on the analysis, we combine Evolutionary Stable Strategy (ESS) and General Bass Model (GBM) to build decision-making models for pre-ordering pledging theoretically where risk factors are taken into account. Finally, evolutionary game simulation system is built to simulate the dynamic decision-making behavior in a risk changing environments. The simulation results demonstrate that the currency exchange rate give great impact on international participant’s decision-making behavior in crowdfunding. Low exchange rate brings less investment decision from the investor and high exchange rate leads to overheated investment which challenges funder’s diligence. Project system risk may infest the participant’s decisions-making process and cause ambiguity at the end. Limitation and managerial suggestions are discussed

    Quality test of clamping connection of transmission lines across tensile line

    Get PDF
    This paper develops a new technology for the quality inspection of the transmission line that is important across the tensile clamp. The new technology mainly based on the ultrasonic pulse echo thickness measurement mechanism tests the thickness of the aluminum sleeve after crimping the tensile clamp to reflect the relative position of the aluminum sleeve and the steel anchor after the crimping, thereby judging whether there is a crimping positioning defect. At the same time, it is supplemented by steel anchor model comparison, crimping position length comparison, and crimping to margin detection to determine whether the transmission line crimping quality is qualified

    Correlated Mutation Analysis on the Catalytic Domains of Serine/Threonine Protein Kinases

    Get PDF
    BACKGROUND:Protein kinases (PKs) have emerged as the largest family of signaling proteins in eukaryotic cells and are involved in every aspect of cellular regulation. Great progresses have been made in understanding the mechanisms of PKs phosphorylating their substrates, but the detailed mechanisms, by which PKs ensure their substrate specificity with their structurally conserved catalytic domains, still have not been adequately understood. Correlated mutation analysis based on large sets of diverse sequence data may provide new insights into this question. METHODOLOGY/PRINCIPAL FINDINGS:Statistical coupling, residue correlation and mutual information analyses along with clustering were applied to analyze the structure-based multiple sequence alignment of the catalytic domains of the Ser/Thr PK family. Two clusters of highly coupled sites were identified. Mapping these positions onto the 3D structure of PK catalytic domain showed that these two groups of positions form two physically close networks. We named these two networks as theta-shaped and gamma-shaped networks, respectively. CONCLUSIONS/SIGNIFICANCE:The theta-shaped network links the active site cleft and the substrate binding regions, and might participate in PKs recognizing and interacting with their substrates. The gamma-shaped network is mainly situated in one side of substrate binding regions, linking the activation loop and the substrate binding regions. It might play a role in supporting the activation loop and substrate binding regions before catalysis, and participate in product releasing after phosphoryl transfer. Our results exhibit significant correlations with experimental observations, and can be used as a guide to further experimental and theoretical studies on the mechanisms of PKs interacting with their substrates

    Microglial P2Y12 receptor regulates ventral hippocampal CA1 neuronal excitability and innate fear in mice

    Get PDF
    The P2Y12 receptor (P2Y12R) is a purinoceptor that is selectively expressed in microglia in the central nervous system. As a signature receptor, microglial P2Y12R mediates process chemotaxis towards ADP/ATP gradients and is engaged in several neurological diseases including chronic pain, stroke and seizures. However, the role of microglial P2Y12R in regulating neuronal excitability and innate behaviors is not fully understood. Here, we generated P2Y12-floxed mice to delete microglial P2Y12R beginning in development (CX3CR1Cre/+:P2Y12f/f; “constitutive knockout”), or after normal development in adult mice (CX3CR1CreER/+:P2Y12f/f; “induced knockout”). Using a battery of behavioral tests, we found that both constitutive and induced P2Y12R knockout mice exhibited innate fear but not learned fear behaviors. After mice were exposed to the elevated plus maze, the c-fos expression in ventral hippocampus CA1 neurons was robustly increased in P2Y12R knockout mice compared with wild-type mice. Consistently, using whole cell patch clamp recording, we found the excitability of ventral hippocampus CA1 neurons was increased in the P2Y12R knockout mice. The results suggest that microglial P2Y12R regulates neuronal excitability and innate fear behaviors in developing and adult mice

    Microglial P2Y12 receptor regulates ventral hippocampal CA1 neuronal excitability and innate fear in mice

    Get PDF
    The P2Y12 receptor (P2Y12R) is a purinoceptor that is selectively expressed in microglia in the central nervous system. As a signature receptor, microglial P2Y12R mediates process chemotaxis towards ADP/ATP gradients and is engaged in several neurological diseases including chronic pain, stroke and seizures. However, the role of microglial P2Y12R in regulating neuronal excitability and innate behaviors is not fully understood. Here, we generated P2Y12-floxed mice to delete microglial P2Y12R beginning in development (CX3CR1Cre/+:P2Y12f/f; “constitutive knockout”), or after normal development in adult mice (CX3CR1CreER/+:P2Y12f/f; “induced knockout”). Using a battery of behavioral tests, we found that both constitutive and induced P2Y12R knockout mice exhibited innate fear but not learned fear behaviors. After mice were exposed to the elevated plus maze, the c-fos expression in ventral hippocampus CA1 neurons was robustly increased in P2Y12R knockout mice compared with wild-type mice. Consistently, using whole cell patch clamp recording, we found the excitability of ventral hippocampus CA1 neurons was increased in the P2Y12R knockout mice. The results suggest that microglial P2Y12R regulates neuronal excitability and innate fear behaviors in developing and adult mice

    7. 直腸閉鎖の一治験例(第510回千葉医学会例会 第7回佐藤外科例会)

    Get PDF
    The chronological course of foliar NtARF8, NtARF17, and NtARF19 expression during the vegetative growth process. (PDF 40 kb

    MLVSNet: Multi-level Voting Siamese Network for 3D visual tracking

    Get PDF
    Benefiting from the excellent performance of Siamese-based trackers, huge progress on 2D visual tracking has been achieved. However, 3D visual tracking is still under-explored. Inspired by the idea of Hough voting in 3D object detection, in this paper, we propose a Multi-level Voting Siamese Network (MLVSNet) for 3D visual tracking from outdoor point cloud sequences. To deal with sparsity in outdoor 3D point clouds, we propose to perform Hough voting on multi-level features to get more vote centers and retain more useful information, instead of voting only on the fi-nal level feature as in previous methods. We also design an efficient and lightweight Target-Guided Attention (TGA) module to transfer the target information and highlight the target points in the search area. Moreover, we propose a Vote-cluster Feature Enhancement (VFE) module to exploit the relationships between different vote clusters. Extensive experiments on the 3D tracking benchmark of KITTI dataset demonstrate that our MLVSNet outperforms state-of-the-art methods with significant margins. Code will be available at https://github.com/CodeWZT/MLVSNet
    corecore