263 research outputs found
Trioctylphosphine as Both Solvent and Stabilizer to Synthesize CdS Nanorods
High quality CdS nanorods are synthesized reproducibly with cadmium acetate and sulfur as precursors in trioctylphosphine solution. The morphology, crystalline form and phase composition of CdS nanorods are characterized by transmission electron microscopy (TEM), high-resolution TEM and X-ray diffraction (XRD). CdS nanorods obtained are uniform with an aspect ratio of about 5:1 and in a wurtzite structure. The influence of reaction conditions on the growth of CdS nanorods demonstrates that low precursor concentration and high reaction temperature (260 °C) are favorable for the formation of uniform CdS nanorods with 85.3% of product yield
Protein kinase Cepsilon is important for migration of neuroblastoma cells
<p>Abstract</p> <p>Background</p> <p>Migration is important for the metastatic capacity and thus for the malignancy of cancer cells. There is limited knowledge on regulatory factors that promote the migration of neuroblastoma cells. This study investigates the hypothesis that protein kinase C (PKC) isoforms regulate neuroblastoma cell motility.</p> <p>Methods</p> <p>PKC isoforms were downregulated with siRNA or modulated with activators and inhibitors. Migration was analyzed with scratch and transwell assays. Protein phosphorylation and expression levels were measured with Western blot.</p> <p>Results</p> <p>Stimulation with 12-<it>O</it>-tetradecanoylphorbol-13-acetate (TPA) induced migration of SK-N-BE(2)C neuroblastoma cells. Treatment with the general protein kinase C (PKC) inhibitor GF109203X and the inhibitor of classical isoforms Gö6976 inhibited migration while an inhibitor of PKCβ isoforms did not have an effect. Downregulation of PKCε, but not of PKCα or PKCδ, with siRNA led to a suppression of both basal and TPA-stimulated migration. Experiments using PD98059 and LY294002, inhibitors of the Erk and phosphatidylinositol 3-kinase (PI3K) pathways, respectively, showed that PI3K is not necessary for TPA-induced migration. The Erk pathway might be involved in TPA-induced migration but not in migration driven by PKCε. TPA induced phosphorylation of the PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS) which was suppressed by the PKC inhibitors. Treatment with siRNA oligonucleotides against different PKC isoforms before stimulation with TPA did not influence the phosphorylation of MARCKS.</p> <p>Conclusion</p> <p>PKCε is important for migration of SK-N-BE(2)C neuroblastoma cells. Neither the Erk pathway nor MARCKS are critical downstream targets of PKCε but they may be involved in TPA-mediated migration.</p
A novel COMP mutation in a pseudoachondroplasia family of Chinese origin
<p>Abstract</p> <p>Background</p> <p>Pseudoachondroplasia (PSACH) is caused exclusively by mutations in the gene for cartilage oligomeric matrix protein (<it>COMP</it>). Only a small number of studies have documented the clinical phenotype and genetic basis in Chinese PSACH patients.</p> <p>Case presentation</p> <p>We investigated a four-generation PSACH pedigree of Chinese Han origin. Two patients and two unaffected individuals were recruited for clinical evaluation and molecular genetic analysis. The genomic DNA was extracted from peripheral blood leukocytes. Polymerase chain reaction (PCR) was adopted to amplify the 8-19 exons of <it>COMP </it>gene. Then the products were sequenced bi-directionally for screening mutation. Clinical evaluation revealed that PSACH patients in this pedigree had a severe disproportionate short stature (-10SD). A heterozygous TGTCCCTGG insertion in exon 13, between nucleotide 1352T and 1353G, were identified in the patients except the unaffected individuals, which resulted in a three-amino-acid insertion (451V_452P ins VPG) in the sixth calmodulin-like repeat of the <it>COMP </it>protein.</p> <p>Conclusion</p> <p>This c. 1352_1353ins TGTCCCTGG is a novel mutation responsible for severe familial PSACH.</p
Cryo-EM structure of the spinach cytochrome b6 f complex at 3.6 Å resolution.
The cytochrome b6 f (cytb6 f ) complex has a central role in oxygenic photosynthesis, linking electron transfer between photosystems I and II and converting solar energy into a transmembrane proton gradient for ATP synthesis1-3. Electron transfer within cytb6 f occurs via the quinol (Q) cycle, which catalyses the oxidation of plastoquinol (PQH2) and the reduction of both plastocyanin (PC) and plastoquinone (PQ) at two separate sites via electron bifurcation2. In higher plants, cytb6 f also acts as a redox-sensing hub, pivotal to the regulation of light harvesting and cyclic electron transfer that protect against metabolic and environmental stresses3. Here we present a 3.6 Å resolution cryo-electron microscopy (cryo-EM) structure of the dimeric cytb6 f complex from spinach, which reveals the structural basis for operation of the Q cycle and its redox-sensing function. The complex contains up to three natively bound PQ molecules. The first, PQ1, is located in one cytb6 f monomer near the PQ oxidation site (Qp) adjacent to haem bp and chlorophyll a. Two conformations of the chlorophyll a phytyl tail were resolved, one that prevents access to the Qp site and another that permits it, supporting a gating function for the chlorophyll a involved in redox sensing. PQ2 straddles the intermonomer cavity, partially obstructing the PQ reduction site (Qn) on the PQ1 side and committing the electron transfer network to turnover at the occupied Qn site in the neighbouring monomer. A conformational switch involving the haem cn propionate promotes two-electron, two-proton reduction at the Qn site and avoids formation of the reactive intermediate semiquinone. The location of a tentatively assigned third PQ molecule is consistent with a transition between the Qp and Qn sites in opposite monomers during the Q cycle. The spinach cytb6 f structure therefore provides new insights into how the complex fulfils its catalytic and regulatory roles in photosynthesis
Heterodimers of photoreceptor-specific nuclear receptor (PNR/NR2E3) and peroxisome proliferator-activated receptor (PPARγ) are disrupted by retinal disease-associated mutations
Photoreceptor-specific nuclear receptor (PNR/NR2E3) and Tailless homolog (TLX/NR2E1) are human orthologs of the NR2E group, a subgroup of phylogenetically related members of the Nuclear Receptor (NR) superfamily of transcription factors. We assessed the ability of these NRs to form heterodimers with other members of the human NRs representing all major subgroups. The TLX ligand binding domain (LBD) did not appear to form homodimers or interact directly with any other NR tested. The PNR LBD was able to form homodimers, but also exhibited robust interactions with the LBDs of PPARγ/NR1C3 and TRβ/NR1A2. The binding of PNR to PPARγ was specific for this paralog, as no interaction was observed with the LBDs of PPARαNR1C1 or PPARδNR1C2. In support of these findings, PPARγ and PNR were found to be co-expressed in human retinal tissue extracts and could be co-immunoprecipitated as a native complex. Selected sequence variants in the PNR LBD associated with human retinopathies, or a mutation in the dimerization region of PPARγ LBD associated with familial partial lipodystrophy type 3, were found to disrupt PNR/PPARγ complex formation. Wild type PNR, but not a PNR309G mutant, was able to repress PPARγ-mediated transcription in reporter assays. In summary our results reveal novel heterodimer interactions in the NR superfamily, suggesting previously unknown functional interactions of PNR with PPARγ and TRβ that have potential importance in retinal development and disease
Endocrine regulation of predator-induced phenotypic plasticity
Elucidating the developmental and genetic control of phenotypic plasticity remains a central agenda in evolutionary ecology. Here, we investigate the physiological regulation of phenotypic plasticity induced by another organism, specifically predator-induced phenotypic plasticity in the model ecological and evolutionary organism Daphnia pulex. Our research centres on using molecular tools to test among alternative mechanisms of developmental control tied to hormone titres, receptors and their timing in the life cycle. First, we synthesize detail about predator-induced defenses and the physiological regulation of arthropod somatic growth and morphology, leading to a clear prediction that morphological defences are regulated by juvenile hormone and life-history plasticity by ecdysone and juvenile hormone. We then show how a small network of genes can differentiate phenotype expression between the two primary developmental control pathways in arthropods: juvenoid and ecdysteroid hormone signalling. Then, by applying an experimental gradient of predation risk, we show dose-dependent gene expression linking predator-induced plasticity to the juvenoid hormone pathway. Our data support three conclusions: (1) the juvenoid signalling pathway regulates predator-induced phenotypic plasticity; (2) the hormone titre (ligand), rather than receptor, regulates predator-induced developmental plasticity; (3) evolution has favoured the harnessing of a major, highly conserved endocrine pathway in arthropod development to regulate the response to cues about changing environments (risk) from another organism (predator)
Genetic polymorphisms associated with the inflammatory response in bacterial meningitis
BACKGROUND
Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously.
METHODS
The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method.
RESULTS
We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients.
CONCLUSIONS
In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches
- …