473 research outputs found
Evolutionarily Optimized Electromagnetic Sensor Measurements for Robust Surgical Navigation
© 2001-2012 IEEE. Miniaturized electromagnetic sensors are increasingly introduced to navigate surgical instruments to anatomical targets during minimally invasive procedures, such as endoscopic surgery. These sensors are usually attached at the distal tips of surgical instruments to track their three-dimensional motion represented by the position and orientation in six degrees of freedom. Unfortunately, these sensors suffer from inaccurate measurements and jitter errors due to the patient movement (e.g., respiratory motion) and magnetic field distortion. This paper proposes an evolutionary computing strategy to optimize the sensor measurements and improve the tracking accuracy of surgical navigation. We modified two evolutionary computation algorithms and proposed adaptive particle swarm optimization (APSO) and observation-boosted differential evolution (OBDE) to enhance the navigation accuracy. The experimental results demonstrate that our modified algorithms to evolutionarily optimize electromagnetic sensor measurements can critically reduce the tracking error from 4.8 to 2.9 mm. In particular, OBDE outperforms APSO for electromagnetic endoscopic navigation
Janus monolayers of transition metal dichalcogenides.
Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements
Overexpression of Nrdp1 in the Heart Exacerbates Doxorubicin-Induced Cardiac Dysfunction in Mice
BACKGROUND: Cardiac cell death and generation of oxidative stress contribute to doxorubicin (DOX)-induced cardiac dysfunction. E3 ligase Nrdp1 plays a critical role in the regulation of cell apoptosis, inflammation and production of reactive oxygen species (ROS), which may contribute to heart failure. However, the role of Nrdp1 in DOX-induced cardiac injury remains to be determined. METHODS AND RESULTS: We examined the effect of Nrdp1 overexpression with DOX treatment in rat neonatal cardiomyocytes and mouse heart tissue. Cardiomyocytes were infected with adenovirus containing GFP (Ad-GFP), Nrdp1 wild-type (Ad-Nrdp1) or the dominant-negative form of Nrdp1 (Ad-Dn-Nrdp1), then treated with DOX for 24 hr. DOX treatment increased cell death and apoptosis, with Ad-Nrdp1 infection enhancing these actions but Ad-Dn-Nrdp1 infection attenuating these effects. Furthermore, 5 days after a single injection of DOX (20 mg/kg, intraperitoneally), Nrdp1 transgenic mice (TG) showed decreased cardiac function and increased apoptosis, autophagy and oxidative stress as compared with wild-type (WT) mice (P<0.01). Survival rate was significantly lower in Nrdp1 TG mice than in WT mice 10 days after DOX injection (P<0.01). CONCLUSIONS/SIGNIFICANCE: These results were associated with decreased activation of Akt, extracellular signal-regulated kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3) signaling pathways. Nrdp1 may be a key mediator in the development of cardiac dysfunction after DOX treatment and associated with inhibition of Akt, ERK1/2 and STAT3. Nrdp1 may be a new therapeutic target in protecting against the cardiotoxic effects of DOX
Rheological properties of magnetic biogels
We report an experimental and theoretical study of the rheological properties of magnetic biogels
consisting of fibrin polymer networks with embedded magnetite nanoparticles, swollen by aqueous solutions.
We studied two types of magnetic biogels, differenced by the presence or absence of an applied magnetic field
during the initial steps of cross-linking. The experiments demonstrated very strong dependence of the elastic
modulus of the magnetic biogels on the concentration of the magnetic particles. We finally developed some
theoretical models that explain the observed strong concentration effects.This study was supported by projects FIS2013-41821-R (Plan Nacional de Investigación Científica, Desarrollo
e Innovación Tecnológica, MINECO, Spain, co-funded by ERDF, European Union) and FIS2017-85954-R (Ministerio de
Economía, Industria y Competitividad, MINECO, andAgencia Estatal de Investigación, AEI, Spain, co-funded by Fondo Europeo
de Desarrollo Regional, FEDER, European Union). A.Z. is grateful to the program of the Ministry of Education and Science of
the Russian Federation, projects 02.A03.21.0006, 3.1438.2017/4.6, and 3.5214.2017/6.7, as well as to the Russian Fund of Basic
Researches, project 18-08-00178
Zeolite-like liquid crystals
Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension
Fabrication of Porous TiO2 Hollow Spheres and Their Application in Gas Sensing
In this work, porous TiO2 hollow spheres with an average diameter of 100 nm and shell thickness of 20 nm were synthesized by a facile hydrothermal method with NH4HCO3 as the structure-directing agent, and the formation mechanism for this porous hollow structure was proved to be the Ostwald ripening process by tracking the morphology of the products at different reaction stages. The product was characterized by SEM, TEM, XRD and BET analyses, and the results show that the as-synthesized products are anatase phase with a high surface area up to 132.5 m2/g. Gas-sensing investigation reveals that the product possesses sensitive response to methanal gas at 200°C due to its high surface area
Relationship between the expansion of drylands and the intensification of Hadley circulation during the late twentieth century
The changes in coverage by arid climate and intensity of the Hadley circulation during the second half of the twentieth century were examined using observations and the multi-model ensemble (MME) mean of Twentieth-Century Coupled Climate Model (20C3M) simulations. It was found that the area of dry climate, which comprises steppe and desert climates following the Köppen climate classification, expanded to an appreciable extent in observation and, to a lesser degree, in MME simulation. The areal extent of steppe climate (the outer boundary of arid climate) tends to encroach on the surrounding climate groups, which, in turn, feeds desert climate (the inner part of arid climate) and causes it to grow. This result indicates the importance of accurate prediction for climate regimes that border steppe climate. Concomitant with the expansion of drylands, the observed intensity of the Hadley cell is persistently enhanced, particularly during boreal winter, suggesting the validity of a self-induction of deserts through a positive biogeophysical feedback (also known as Charney’s cycle). In comparison, the simulated Hadley circulation in the MME mean remains invariant in time. The current climate models, therefore, disagree with the observation in the long-term linkage between desertification and Hadley cell. Finally, the implication of such discrepancy is discussed as a possible guidance to improve models
Regional variations in and correlates of disability-free life expectancy among older adults in China
<p>Abstract</p> <p>Background</p> <p>Considerable socioeconomic and health inequalities have been reported in China. However, because of a lack of appropriate data, limited research has been conducted on variations in disability-free life expectancy (DFLE) among older adults. This study aimed to use the most up-to-date disability survey data to explore geographical variations in DFLE at age 60 in China and to identify the socioeconomic and health care factors that partially account for these variations.</p> <p>Methods</p> <p>This study used 2006 mortality data extrapolated from the 1990 and 2000 Census and disability data from a national disability survey conducted in 2006. Disability was performance based and was diagnosed by trained physicians. DFLE was calculated by region using the Sullivan method. Multiple linear regression models by gender were conducted to explore correlates of DFLE.</p> <p>Results</p> <p>DFLE at age 60 varied widely by region, from 11.2 to 20.8 years in 2006. Per capita gross domestic product, proportion of urban residents, and access to health care were the primary factors associated with geographical variations in DFLE.</p> <p>Conclusion</p> <p>The pattern of differences in DFLE by region mirrors the pattern of regional economic development in China. Countermeasures to decrease regional differences in DFLE include accelerating regional economic development and improving health care distribution.</p
- …