98 research outputs found

    On the apparent permeability of porous media in rarefied gas flows

    Get PDF
    The apparent gas permeability of the porous medium is an important parameter in the prediction of unconventional gas production, which was first investigated systematically by Klinkenberg in 1941 and found to increase with the reciprocal mean gas pressure (or equivalently, the Knudsen number). Although the underlying rarefaction effects are well-known, the reason that the correction factor in Klinkenberg's famous equation decreases when the Knudsen number increases has not been fully understood. Most of the studies idealize the porous medium as a bundle of straight cylindrical tubes, however, according to the gas kinetic theory, this only results in an increase of the correction factor with the Knudsen number, which clearly contradicts Klinkenberg's experimental observations. Here, by solving the Bhatnagar-Gross-Krook equation in simplified (but not simple) porous media, we identify, for the first time, two key factors that can explain Klinkenberg's experimental results: the tortuous flow path and the non-unitary tangential momentum accommodation coefficient for the gas-surface interaction. Moreover, we find that Klinkenberg's results can only be observed when the ratio between the apparent and intrinsic permeabilities is 30\lesssim30; at large ratios (or Knudsen numbers) the correction factor increases with the Knudsen number. Our numerical results could also serve as benchmarking cases to assess the accuracy of macroscopic models and/or numerical schemes for the modeling/simulation of rarefied gas flows in complex geometries over a wide range of gas rarefaction. Specifically, we point out that the Navier-Stokes equations with the first-order velocity-slip boundary condition are often misused to predict the apparent gas permeability of the porous media; that is, any nonlinear dependence of the apparent gas permeability with the Knudsen number, predicted from the Navier-Stokes equations, is not reliable. Worse still, for some type of gas-surface interactions, even the ``filtered'' linear dependence of the apparent gas permeability with the Knudsen number is of no practical use since, compared to the numerical solution of the Bhatnagar-Gross-Krook equation, it is only accurate when the ratio between the apparent and intrinsic permeabilities is 1.5\lesssim1.5

    Hot air drying characteristics and nutrients of apricot armeniaca vulgaris lam pretreated with Radio Frequency(RF)

    Full text link
    [EN] Apricot pretreated with RF and then dried with convective hot air at 65℃, 3.0m/s in this research. RF pretreatment time of 20, 30, 40 and 50min were chosen. Results showed that, there is only falling rate period during apricot hot air drying, and the drying rate of apricot is improved significantly; Herdenson and Pabis model is suitable for apricot hot air drying; retentions of flavonoids, polyphenols and Vc in dried apricot were higher than those of fresh apricot; when RF treating time was chosen 30mins, nutrients retentions of Vc, flavonoid and polyphenols were 0.9543mg/100g, 5.4089mg/100g and 7.3382mg/100g, separately.The work was financially supported by the Fundamental Research Funds for the Central Universities of China (NO. GK201503072 and GK201601007).Peng, M.; Liu, J.; Lei, Y.; Yang, X.; Wu, Z.; Huang, X. (2018). Hot air drying characteristics and nutrients of apricot armeniaca vulgaris lam pretreated with Radio Frequency(RF). En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 1583-1590. https://doi.org/10.4995/IDS2018.2018.7524OCS1583159

    Role of the IRS-1 and/or -2 in the pathogenesis of insulin resistance in Dahl salt-sensitive (S) rats

    Get PDF
    Insulin resistance is a common finding in hypertensive humans and animal models. The Dahl salt-sensitive (S) rat is an ideal model of genetically predetermined insulin resistance and salt-sensitive hypertension. Along the insulin signaling pathway, the insulin receptor substrates 1 and 2 (IRS-1 and -2) are important mediators of insulin signaling. IRS-1 and/or IRS-2 genetic variant(s) and/or enhanced serine phosphorylation correlate with insulin resistance. The present commentary was designed to highlight the significance of IRS-1 and/or -2 in the pathogenesis of insulin resistance. An emphasis will be given to the putative role of IRS-1 and/or -2 genetic variant(s) and serine phosphorylation in precipitating insulin resistance

    The inflammatory cytokine IL-6 induces FRA1 deacetylation promoting colorectal cancer stem-like properties

    Get PDF
    Colorectal cancer (CRC) has long been known for its tight association with chronic inflammation, thought to play a key role in tumor onset and malignant progression through the modulation of cancer stemness. However, the underlying molecular and cellular mechanisms are still largely elusive. Here we show that the IL-6/STAT3 inflammatory signaling axis induces the deacetylation of FRA1 at the Lys-116 residue located within its DNA-binding domain. The HDAC6 deacetylase underlies this key modification leading to the increase of FRA1 transcriptional activity, the subsequent transactivation of NANOG expression, and the acquisition of stem-like cellular features. As validated in a large (n = 123) CRC cohort, IL-6 secretion was invariably accompanied by increased FRA1 deacetylation at K116 and an overall increase in its protein levels, coincident with malignant progression and poor prognosis. Of note, combined treatment with the conventional cytotoxic drug 5-FU together with Tubastatin A, a HDAC6-specific inhibitor, resulted in a significant in vivo synergistic inhibitory effect on tumor growth through suppression of CRC stemness. Our results reveal a novel transcriptional and posttranslational regulatory cross-talk between inflammation and stemness signaling pathways that underlie self-renewal and maintenance of CRC stem cells and promote their malignant behavior. Combinatorial treatment aimed at the core regulatory mechanisms downstream of IL-6 may offer a novel promising approach for CRC treatment

    History and Applications of Dust Devil Studies

    Get PDF
    Studies of dust devils, and their impact on society, are reviewed. Dust devils have been noted since antiquity, and have been documented in many countries, as well as on the planet Mars. As time-variable vortex entities, they have become a cultural motif. Three major stimuli of dust devil research are identified, nuclear testing, terrestrial climate studies, and perhaps most significantly, Mars research. Dust devils present an occasional safety hazard to light structures and have caused several deaths

    LEI, J.Q., CAI, J., ZHOU, S.D. & HE, X.J. (2023) Ligusticopsis miyiensis (Apioideae, Apiaceae), a new combination from China revealed by morphological and molecular evidence. Phytotaxa 591 (4): 273-282.

    No full text
    Lei, J.Q., Cai, J., Zhou, S.D., He, X.J. (2023): LEI, J.Q., CAI, J., ZHOU, S.D. & HE, X.J. (2023) Ligusticopsis miyiensis (Apioideae, Apiaceae), a new combination from China revealed by morphological and molecular evidence. Phytotaxa 591 (4): 273-282. Phytotaxa 592 (2): 178-178, DOI: 10.11646/phytotaxa.592.2.12, URL: http://dx.doi.org/10.1094/PDIS-04-22-0755-PD

    Clustering Using Improved Cuckoo Search Algorithm

    No full text
    Cuckoo search (CS) is one of the new swarm intelligence optimization algorithms inspired by the obligate brood parasitic behavior of cuckoo, which used the idea of L??vy flights. But the convergence and stability of the algorithm is not ideal due to the heavy-tail property of L??vy flights. Therefore an improved cuckoo search (ICS) algorithm for clustering is proposed, in which the movement and randomization of the cuckoo is modified. The simulation results of ICS clustering method on UCI benchmark data sets compared with other different clustering algorithms show that the new algorithm is feasible and efficient in data clustering, and the stability and convergence speed both get improved obviously. ? Springer International Publishing Switzerland 2014.EI0479-488879

    A multiobjective state transition algorithm for single machine scheduling

    Full text link
    In this paper, a discrete state transition algorithm is introduced to solve a multiobjective single machine job shop scheduling problem. In the proposed approach, a non-dominated sort technique is used to select the best from a candidate state set, and a Pareto archived strategy is adopted to keep all the non-dominated solutions. Compared with the enumeration and other heuristics, experimental results have demonstrated the effectiveness of the multiobjective state transition algorithm
    corecore