242 research outputs found

    Monolithically Integrated InP-based Optical Pulse Shaper

    Get PDF
    Spectral phase control of optical pulses is often required to generate short pulses, and an important application of a pulse shaper is spectral chirp/dispersion (pre-) compensation. In this paper, we present the pulse shaping/compression capability of a monolithically integrated optical pulse shaper. Chip fabrication has been carried out in a standardized generic photonic integration platform which is available in the framework of European FP7 project EuroPIC. A key capability of this platform is the active-passive integration scheme which allows direct integration of active components such as semiconductor optical amplifiers (SOAs) with passive elements such as arrayed waveguide gratings (AWGs) and phase modulators (PMs) on a single photonic chip

    Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP

    Get PDF
    This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.013540. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under lawIn this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm 2 and is able to perform label swapping operations required in SAC at a speed of 155 Mbps. The device was manufactured in InP using a multiple purpose generic integration scheme. Compared to previous SAC label swapper demonstrations, using discrete component assembly, this label swapper chip operates two order of magnitudes faster. © 2011 Optical Society of America.The activities have been carried out in the framework of the Joint Research Activity (JRA) 'Active-phased Arrayed Devices' (WP 44) of the European Commission FP6 Network of Excellence ePIXnet (European Network of Excellence on Photonic Integrated Components and Circuits), Project Reference: 004525, http://www.epixnet.org/. This work has been partially funded through the Spanish Plan Nacional de I+D+i 2008-2011 project TEC2008-06145/TEC. It has also been partially supported by the Canadian Institute for Photonic Innovations. Devices are presently being fabricated through the InP Photonic Integration Platform JePPIX (coordinator D J Robbins), at the COBRA fab, http://www.jeppix.eu/Muñoz Muñoz, P.; Garcia-Olcina, R.; Habib, C.; Chen, LR.; Leijtens, XJM.; De Vries, T.; Robbins, D.... (2011). Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP. Optics Express. 19(14):13540-13550. https://doi.org/10.1364/OE.19.013540S13540135501914Yoo, S. J. B. (2006). Optical Packet and Burst Switching Technologies for the Future Photonic Internet. Journal of Lightwave Technology, 24(12), 4468-4492. doi:10.1109/jlt.2006.886060Blumenthal, D. J., Olsson, B.-E., Rossi, G., Dimmick, T. E., Rau, L., Masanovic, M., … Barton, J. (2000). All-optical label swapping networks and technologies. Journal of Lightwave Technology, 18(12), 2058-2075. doi:10.1109/50.908817Srivatsa, A., d. Waardt, H., Hill, M. T., Khoe, G. D., & Dorren, H. J. S. (2001). All-optical serial header processing based on two-pulse correlation. Electronics Letters, 37(4), 234. doi:10.1049/el:20010178Gordon, R. E., & Chen, L. R. (2006). Demonstration of all-photonic spectral label-switching for optical MPLS networks. IEEE Photonics Technology Letters, 18(4), 586-588. doi:10.1109/lpt.2006.870188Habib, C., Baby, V., Chen, L. R., Delisle-Simard, A., & LaRochelle, S. (2008). All-Optical Swapping of Spectral Amplitude Code Labels Using Nonlinear Media and Semiconductor Fiber Ring Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 14(3), 879-888. doi:10.1109/jstqe.2008.918047Cole, C., Huebner, B., & Johnson, J. (2009). Photonic integration for high-volume, low-cost applications. IEEE Communications Magazine, 47(3), S16-S22. doi:10.1109/mcom.2009.4804385Calabretta, N., Jung, H.-D., Llorente, J. H., Tangdiongga, E., Koonen, T. A. M. J., & Dorren, H. J. S. (2009). All-Optical Label Swapping of Scalable In-Band Address Labels and 160-Gb/s Data Packets. Journal of Lightwave Technology, 27(3), 214-223. doi:10.1109/jlt.2008.2009319Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370Eisenstein, G. (1989). Semiconductor optical amplifiers. IEEE Circuits and Devices Magazine, 5(4), 25-30. doi:10.1109/101.29899Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474Zilkie, A. J., Meier, J., Mojahedi, M., Poole, P. J., Barrios, P., Poitras, D., … Aitchison, J. S. (2007). Carrier Dynamics of Quantum-Dot, Quantum-Dash, and Quantum-Well Semiconductor Optical Amplifiers Operating at 1.55 μm\mu{\hbox {m}}. IEEE Journal of Quantum Electronics, 43(11), 982-991. doi:10.1109/jqe.2007.90447

    InP/InGaAs photodetector on SOI photonic circuitry

    Get PDF
    We present an InP-based membrane p-i-n photodetector on a silicon-on-insulator sample containing a Si-wiring photonic circuit that is suitable for use in optical interconnections on Si integrated circuits (ICs). The detector mesa footprint is 50 mu m(2), which is the smallest reported to date for this kind of device, and the junction capacitance is below 10 fF, which allows for high integration density and low dynamic power consumption. The measured detector responsivity and 3-dB bandwidth are 0.45 A/W and 33 GHz, respectively. The device fabrication is compatible with wafer-scale processing steps, guaranteeing compatibility toward future-generation electronic IC processing

    An introduction to InP-based generic integration technology

    Get PDF
    Photonic integrated circuits (PICs) are considered as the way to make photonic systems or subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets. Recently, a novel approach in photonic integration is emerging which will reduce the R&D and prototyping costs and the throughput time of PICs by more than an order of magnitude. It will bring the application of PICs that integrate complex and advanced photonic functionality on a single chip within reach for a large number of small and larger companies and initiate a breakthrough in the application of Photonic ICs. The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology

    An introduction to InP-based generic integration technology

    Get PDF
    Photonic integrated circuits (PICs) are considered as the way to make photonic systems or subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets.Recently, a novel approach in photonic integration is emerging which will reduce the R&D and prototyping costs and the throughput time of PICs by more than an order of magnitude. It will bring the application of PICs that integrate complex and advanced photonic functionality on a single chip within reach for a large number of small and larger companies and initiate a breakthrough in the application of Photonic ICs. The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology.Funding is acknowledged by the EU-projects ePIXnet, EuroPIC and PARADIGM and the Dutch projects NRC Photonics, MEMPHIS, IOP Photonic Devices and STW GTIP. Many others have contributed and the authors would like to thank other PARADIGM and EuroPIC partners for their help in discussions, particularly Michael Robertson (CIP).This is the final published version distributed under a Creative Commons Attribution License. It can also be viewed on the publisher's website at: http://iopscience.iop.org/0268-1242/29/8/08300

    Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiO2: Separation of Electronic and Chemical Charge Storage, Understanding Two Recombination Lifetimes, and the Evolution of Band Offsets during J-V Hysteresis

    Get PDF
    Methylammonium lead iodide (MAPI) cells of the design FTO/sTiO2/ mpTiO2/MAPI/Spiro-OMeTAD/Au, where FTO is fluorine-doped tin oxide, sTiO2 indicates solid-TiO2, and mpTiO2 is mesoporous TiO2, are studied using transient photovoltage (TPV), differential capacitance, charge extraction, current interrupt, and chronophotoamperometry. We show that in mpTiO2/MAPI cells there are two kinds of extractable charge stored under operation: a capacitive electronic charge (&sim;0.2 &mu;C/ cm2) and another, larger charge (40 &mu;C/cm2), possibly related to mobile ions. Transient photovoltage decays are strongly double exponential with two time constants that differ by a factor of &sim;5, independent of bias light intensity. The fast decay (&sim;1 &mu;s at 1 sun) is assigned to the predominant charge recombination pathway in the cell. We examine and reject the possibility that the fast decay is due to ferroelectric relaxation or to the bulk photovoltaic effect. Like many MAPI solar cells, the studied cells show significant J&minus;V hysteresis. Capacitance vs open circuit voltage (Voc) data indicate that the hysteresis involves a change in internal potential gradients, likely a shift in band offset at the TiO2/MAPI interface. The TPV results show that the Voc hysteresis is not due to a change in recombination rate constant. Calculation of recombination flux at Voc suggests that the hysteresis is also not due to an increase in charge separation efficiency and that charge generation is not a function of applied bias. We also show that the J&minus;V hysteresis is not a light driven effect but is caused by exposure to electrical bias, light or dark.</div
    corecore