5,832 research outputs found

    A new method for the assessment of traction enhancers and the generation of organic layers in a twin-disc machine

    Get PDF
    Low adhesion presents a major concern for many rail operators. Railway vehicles under these circumstances can experience a serious loss of braking capability giving rise to dangerous situations such as platform overruns and signals passed at danger. One cause of adhesion loss is autumn leaf fall [1]. Leaves are run over by the wheels of a train and a chemical reaction occurs between the leaf and the rail steel [2]. This forms a black layer on the rail which when wet causes very low friction. These leaf layers have also been shown to be isolating and can interfere with railway signalling systems. Traction enhancers (also referred to in this paper as traction gels) have been developed as an alternative solution to using sand alone. They consist of sand particles suspended in a water based gel and are designed to be delivered to the rail by the trackside or via mobile application systems. The aim of this work was to develop a technique for generating a representative leaf layer on the surface of a twin-disc rail specimen and using this to develop a test methodology for assessing the performance of a traction gel in terms of adhesion recovery, wear and its effect on wheel/rail isolation

    Charge transport through molecular ensembles: Recent progress in molecular electronics featured

    Get PDF
    This review focuses on molecular ensemble junctions in which the individual molecules of a monolayer each span two electrodes. This geometry favors quantum mechanical tunneling as the dominant mechanism of charge transport, which translates perturbances on the scale of bond lengths into nonlinear electrical responses. The ability to affect these responses at low voltages and with a variety of inputs, such as de/protonation, photon absorption, isomerization, oxidation/reduction, etc., creates the possibility to fabricate molecule-scale electronic devices that augment; extend; and, in some cases, outperform conventional semiconductor-based electronics. Moreover, these molecular devices, in part, fabricate themselves by defining single-nanometer features with atomic precision via self-assembly. Although these junctions share many properties with single-molecule junctions, they also possess unique properties that present a different set of problems and exhibit unique properties. The primary trade-off of ensemble junctions is complexity for functionality; disordered molecular ensembles are significantly more difficult to model, particularly atomistically, but they are static and can be incorporated into integrated circuits. Progress toward useful functionality has accelerated in recent years, concomitant with deeper scientific insight into the mediation of charge transport by ensembles of molecules and experimental platforms that enable empirical studies to control for defects and artifacts. This review separates junctions by the trade-offs, complexity, and sensitivity of their constituents; the bottom electrode to which the ensembles are anchored and the nature of the anchoring chemistry both chemically and with respect to electronic coupling; the molecular layer and the relationship among electronic structure, mechanism of charge transport, and electrical output; and the top electrode that realizes an individual junction by defining its geometry and a second molecule–electrode interface. Due to growing interest in and accessibility of this interdisciplinary field, there is now sufficient variety in each of these parts to be able to treat them separately. When viewed this way, clear structure–function relationships emerge that can serve as design rules for extracting useful functionality

    Full Counting Statistics of Multiple Andreev Reflections in incoherent diffusive superconducting junctions

    Full text link
    We present a theory for the full distribution of current fluctuations in incoherent diffusive superconducting junctions, subjected to a voltage bias. This theory of full counting statistics of incoherent multiple Andreev reflections is valid for arbitrary applied voltage. We present a detailed discussion of the properties of the first four cumulants as well as the low and high voltage regimes of the full counting statistics. The work is an extension of the results of Pilgram and the author, Phys. Rev. Lett. 94, 086806 (2005).Comment: Included in special issue Spin Physics of Superconducting heterostructures of Applied Physics A: Materials Science & Processin

    Effects of Fermi energy, dot size and leads width on weak localization in chaotic quantum dots

    Full text link
    Magnetotransport in chaotic quantum dots at low magnetic fields is investigated by means of a tight binding Hamiltonian on L x L clusters of the square lattice. Chaoticity is induced by introducing L bulk vacancies. The dependence of weak localization on the Fermi energy, dot size and leads width is investigated in detail and the results compared with those of previous analyses, in particular with random matrix theory predictions. Our results indicate that the dependence of the critical flux Phi_c on the square root of the number of open modes, as predicted by random matrix theory, is obscured by the strong energy dependence of the proportionality constant. Instead, the size dependence of the critical flux predicted by Efetov and random matrix theory, namely, Phi_c ~ sqrt{1/L}, is clearly illustrated by the present results. Our numerical results do also show that the weak localization term significantly decreases as the leads width W approaches L. However, calculations for W=L indicate that the weak localization effect does not disappear as L increases.Comment: RevTeX, 8 postscript figures include

    Towards automated test and validation of SIP solutions

    Get PDF
    IP networks are currently the major communication infrastructure used by an increasing number of applications and heterogeneous services, including voice services. In this context, the Session Initiation Protocol (SIP) is a signaling protocol widely used for controlling multimedia communication sessions such as voice or video calls over IP networks, thus performing vital functions in an extensive set of public and enter- prise solutions. However, the SIP protocol dissemination also entails some challenges, such as the complexity associated with the testing/validation processes of IMS/SIP networks. As a consequence, manual IMS/SIP testing solutions are inherently costly and time consuming tasks, being crucial to develop automated approaches in this specific area. In this perspective, this article presents an experimental approach for automated testing/validation of SIP scenarios in IMS networks. For that purpose, an automation framework is proposed allowing to replicate the configuration of SIP equipment from the pro- duction network and submit such equipment to a battery of tests in the testing network. The proposed solution allows to drastically reduce the test and validation times when compared with traditional manual approaches, also allowing to enhance testing reliability and coverage. The automation framework comprises of some freely available tools which are conveniently integrated with other specific modules implemented within the context of this work. In order to illustrate the advantages of the proposed automated framework, a real case study taken from a PT Inovação customer is presented comparing the time required to perform a manual SIP testing approach with the one time required when using the proposed auto- mated framework. The presented results clearly corroborate the advantages of using the presented framework.This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope: PEstOE/EEI/UI0319/2014. This research work was developed within the collaboration of PT Inovação (http://www.ptinovacao.pt/ en/)

    Amblyraja georgiana, Antarctic Starry Skate

    Get PDF
    The Antarctic Starry Skate (Amblyraja georgiana) is a medium-sized (to 115 cm total length) deepwater skate that occurs in the Southeast Pacific Ocean off southern Chile, in the Southwest Atlantic Ocean off southern Argentina and the Falkland Islands (Malvinas), in the Atlantic and Pacific Antarctic Oceans from South Georgia Island and the Antarctic Peninsula to the Ross Sea, and in the Indian Antarctic off the Crozet Islands. It is demersal on continental and insular slopes at depths of 20?1,255 m, and is captured as bycatch in trawl and longline fisheries, particularly those targeting Patagonian Toothfish (Dissostichus eleginoides). There are no population size estimates for this skate, and it is not clear what the current population trend is. Although estimates of bycatch around South Georgia and the Ross Sea are comprised of a low percentage of overall estimated stock biomass, the demographic consequences are unknown and require further research. Furthermore, catch levels in other areas are unknown, and some specimens previously referred to as this species may include cryptic individuals of a yet-to-be-described species. Overall, it is not clear what level of fishing mortality this species is exposed to across its range, and further research is needed on distribution, population size and trend, and threats. Therefore, the Antarctic Starry Skate is assessed as Data Deficient.Fil: Pollom, R.. University Fraser Simon; CanadáFil: Acuña, E.. Universidad Católica del Norte; ChileFil: Bustamante, C.. Universidad de Antofagasta; ChileFil: Chiaramonte, Gustavo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Estación Hidrobiológica de Puerto Quequén (sede Quequén); ArgentinaFil: Cuevas, J.M.. Wildlife Conservation Society; Estados UnidosFil: Herman, K.. Georgia Aquarium; Estados UnidosFil: Pompert, J.. No especifíca;Fil: Velez Zuazo, X.. No especifíca

    Full Current Statistics in Diffusive Normal-Superconductor Structures

    Full text link
    We study the current statistics in normal diffusive conductors in contact with a superconductor. Using an extension of the Keldysh Green's function method we are able to find the full distribution of charge transfers for all temperatures and voltages. For the non-Gaussian regime, we show that the equilibrium current fluctuations are enhanced by the presence of the superconductor. We predict an enhancement of the nonequilibrium current noise for temperatures below and voltages of the order of the Thouless energy E_Th=D/L^2. Our calculation fully accounts for the proximity effect in the normal metal and agrees with experimental data. We demonstrate that the calculation of the full current statistics is in fact simpler than a concrete calculation of the noise.Comment: 4 pages, 2 figures (included

    Breathers and kinks in a simulated crystal experiment

    Full text link

    A behavioural model for integrated phase-change photonics

    Get PDF
    This is the author accepted manuscript. The final version is available from the European Phase Change and Ovonics Symposium via the link in this recordThe use of phase-change materials in integrated photonics applications has enabled the development of new types of all-optical devices, including multilevel photonic memories, arithmetic and logic processors and synaptic and neuron mimics. In order to design, optimise and understand the performance of large-scale systems, fast and accurate material and device models are needed. Here we present a behavioural model for phase-change photonic devices that can simulate the write, erase and readout operations in timespans compatible with system level performance evaluation.European Union Horizon 2020Engineering and Physical Sciences Research Council (EPSRC
    corecore