613 research outputs found
Mercury in the snow and firn at Summit Station, Central Greenland, and implications for the study of past atmospheric mercury levels
Gaseous Elemental Mercury (Hg° or GEM) was investigated at Summit Station, Greenland, in the interstitial air extracted from the perennial snowpack (firn) at depths ranging from the surface to 30 m, during summer 2005 and spring 2006. Photolytic production and destruction of Hg° were observed close to the snow surface during summer 2005 and spring 2006, and we observed dark oxidation of GEM up to 270 cm depth in June 2006. Photochemical transformation of gaseous elemental mercury resulted in diel variations in the concentrations of this gas in the near-surface interstitial air, but destruction of Hg° was predominant in June, and production was the main process in July. This seasonal evolution of the chemical mechanisms involving gaseous elemental mercury produces a signal that propagates downward through the firn air, but is unobservably small below 15 m in depth. As a consequence, multi-annual averaged records of GEM concentration should be well preserved in deep firn air at depths below 15 m, and available for the reconstruction of the past atmospheric history of GEM over the last decades
Guided wave optics in periodically poled KTP: quadratic nonlinearity and prospects for attosecond jitter characterization
For the first time to our knowledge, continuous nonsegmented channel waveguides in periodically poled KTiOPO4 with guided orthogonal polarizations are used to demonstrate type II background-free second harmonic generation in the telecom band with 1.6%/(W cm2) normalized conversion efficiency. This constitutes a 90-fold improvement in aggregate conversion efficiency over its free space counterpart. Simulations show that the guided wave device should enable the measurement of timing fluctuations of optical pulse trains at the attosecond level in an optical cross correlation scheme
Gauge symmetry and W-algebra in higher derivative systems
The problem of gauge symmetry in higher derivative Lagrangian systems is
discussed from a Hamiltonian point of view. The number of independent gauge
parameters is shown to be in general {\it{less}} than the number of independent
primary first class constraints, thereby distinguishing it from conventional
first order systems. Different models have been considered as illustrative
examples. In particular we show a direct connection between the gauge symmetry
and the W-algebra for the rigid relativistic particle.Comment: 1+22 pages, 1 figure, LaTeX, v2; title changed, considerably expanded
version with new results, to appear in JHE
Effect of microstructural evolution on magnetic properties of Ni thin films
Copyright © Indian Academy of Sciences.The magnetic properties of Ni thin films, in the range 20–500 nm, at the crystalline-nanocrystalline interface are reported. The effect of thickness, substrate and substrate temperature has been studied. For the films deposited at ambient temperatures on borosilicate glass substrates, the crystallite size, coercive field and magnetization energy density first increase and achieve a maximum at a critical value of thickness and decrease thereafter. At a thickness of 50 nm, the films deposited at ambient temperature onto borosilicate glass, MgO and silicon do not exhibit long-range order but are magnetic as is evident from the non-zero coercive field and magnetization energy. Phase contrast microscopy revealed that the grain sizes increase from a value of 30–50 nm at ambient temperature to 120–150 nm at 503 K and remain approximately constant in this range up to 593 K. The existence of grain boundary walls of width 30–50 nm is demonstrated using phase contrast images. The grain boundary area also stagnates at higher substrate temperature. There is pronounced shape anisotropy as evidenced by the increased aspect ratio of the grains as a function of substrate temperature. Nickel thin films of 50 nm show the absence of long-range crystalline order at ambient temperature growth conditions and a preferred [111] orientation at higher substrate temperatures. Thin films are found to be thermally relaxed at elevated deposition temperature and having large compressive strain at ambient temperature. This transition from nanocrystalline to crystalline order causes a peak in the coercive field in the region of transition as a function of thickness and substrate temperature. The saturation magnetization on the other hand increases with increase in substrate temperature.University Grants Commission for Centre of Advanced Studies in Physic
Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.
Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD
Genetic determinants of co-accessible chromatin regions in activated T cells across humans.
Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression
Validating module network learning algorithms using simulated data
In recent years, several authors have used probabilistic graphical models to
learn expression modules and their regulatory programs from gene expression
data. Here, we demonstrate the use of the synthetic data generator SynTReN for
the purpose of testing and comparing module network learning algorithms. We
introduce a software package for learning module networks, called LeMoNe, which
incorporates a novel strategy for learning regulatory programs. Novelties
include the use of a bottom-up Bayesian hierarchical clustering to construct
the regulatory programs, and the use of a conditional entropy measure to assign
regulators to the regulation program nodes. Using SynTReN data, we test the
performance of LeMoNe in a completely controlled situation and assess the
effect of the methodological changes we made with respect to an existing
software package, namely Genomica. Additionally, we assess the effect of
various parameters, such as the size of the data set and the amount of noise,
on the inference performance. Overall, application of Genomica and LeMoNe to
simulated data sets gave comparable results. However, LeMoNe offers some
advantages, one of them being that the learning process is considerably faster
for larger data sets. Additionally, we show that the location of the regulators
in the LeMoNe regulation programs and their conditional entropy may be used to
prioritize regulators for functional validation, and that the combination of
the bottom-up clustering strategy with the conditional entropy-based assignment
of regulators improves the handling of missing or hidden regulators.Comment: 13 pages, 6 figures + 2 pages, 2 figures supplementary informatio
Measurement of the Decay Asymmetry Parameters in and
We have measured the weak decay asymmetry parameters (\aLC ) for two \LC\
decay modes. Our measurements are \aLC = -0.94^{+0.21+0.12}_{-0.06-0.06} for
the decay mode and \aLC = -0.45\pm 0.31 \pm
0.06 for the decay mode . By combining these
measurements with the previously measured decay rates, we have extracted the
parity-violating and parity-conserving amplitudes. These amplitudes are used to
test models of nonleptonic charmed baryon decay.Comment: 11 pages including the figures. Uses REVTEX and psfig macros. Figures
as uuencoded postscript. Also available as
http://w4.lns.cornell.edu/public/CLNS/1995/CLNS95-1319.p
Measurement of the branching fraction for
We have studied the leptonic decay of the resonance into tau
pairs using the CLEO II detector. A clean sample of tau pair events is
identified via events containing two charged particles where exactly one of the
particles is an identified electron. We find . The result is consistent with
expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS
94/1297, CLEO 94-20 (submitted to Physics Letters B
Observation of a New Charmed Strange Meson
Using the CLEO-II detector, we have obtained evidence for a new meson
decaying to . Its mass is
{}~MeV/ and its width is ~MeV/. Although we do not
establish its spin and parity, the new meson is consistent with predictions for
an , , charmed strange state.Comment: 9 pages uuencoded compressed postscript (process with uudecode then
gunzip). hardcopies with figures can be obtained by sending mail to:
[email protected]
- …
