165 research outputs found

    AMPK is a mechano-metabolic sensor linking cell adhesion and mitochondrial dynamics to Myosin-dependent cell migration

    Get PDF
    Cell migration is crucial for cancer dissemination. We find that AMP-activated protein kinase (AMPK) controls cell migration by acting as an adhesion sensing molecular hub. In 3-dimensional matrices, fast-migrating amoeboid cancer cells exert low adhesion/low traction linked to low ATP/AMP, leading to AMPK activation. In turn, AMPK plays a dual role controlling mitochondrial dynamics and cytoskeletal remodelling. High AMPK activity in low adhering migratory cells, induces mitochondrial fission, resulting in lower oxidative phosphorylation and lower mitochondrial ATP. Concurrently, AMPK inactivates Myosin Phosphatase, increasing Myosin II-dependent amoeboid migration. Reducing adhesion or mitochondrial fusion or activating AMPK induces efficient rounded-amoeboid migration. AMPK inhibition suppresses metastatic potential of amoeboid cancer cells in vivo, while a mitochondrial/AMPK-driven switch is observed in regions of human tumours where amoeboid cells are disseminating. We unveil how mitochondrial dynamics control cell migration and suggest that AMPK is a mechano-metabolic sensor linking energetics and the cytoskeleton

    Functional Modifications of Acid-Sensing Ion Channels by Ligand-Gated Chloride Channels

    Get PDF
    Together, acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that ASICs were reversibly inhibited by activation of GABAA receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABAA receptor-mediated currents. Moreover, activation of the GABAA receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABAA receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABAA receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABAA receptors, also modified ASICs in spinal neurons. We conclude that GABAA receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels

    Multidimensional Conservation Laws: Overview, Problems, and Perspective

    Full text link
    Some of recent important developments are overviewed, several longstanding open problems are discussed, and a perspective is presented for the mathematical theory of multidimensional conservation laws. Some basic features and phenomena of multidimensional hyperbolic conservation laws are revealed, and some samples of multidimensional systems/models and related important problems are presented and analyzed with emphasis on the prototypes that have been solved or may be expected to be solved rigorously at least for some cases. In particular, multidimensional steady supersonic problems and transonic problems, shock reflection-diffraction problems, and related effective nonlinear approaches are analyzed. A theory of divergence-measure vector fields and related analytical frameworks for the analysis of entropy solutions are discussed.Comment: 43 pages, 3 figure

    YAP/TAZ upstream signals and downstream responses

    Get PDF

    A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion

    Get PDF
    Cancer-associated fibroblasts (CAFs) promote tumour invasion and metastasis. We show that CAFs exert a physical force on cancer cells that enables their collective invasion. Force transmission is mediated by a heterophilic adhesion involving N-cadherin at the CAF membrane and E-cadherin at the cancer cell membrane. This adhesion is mechanically active; when subjected to force it triggers β-catenin recruitment and adhesion reinforcement dependent on α-catenin/vinculin interaction. Impairment of E-cadherin/N-cadherin adhesion abrogates the ability of CAFs to guide collective cell migration and blocks cancer cell invasion. N-cadherin also mediates repolarization of the CAFs away from the cancer cells. In parallel, nectins and afadin are recruited to the cancer cell/CAF interface and CAF repolarization is afadin dependent. Heterotypic junctions between CAFs and cancer cells are observed in patient-derived material. Together, our findings show that a mechanically active heterophilic adhesion between CAFs and cancer cells enables cooperative tumour invasion

    European Space Agency experiments on thermodiffusion of fluid mixtures in space

    Get PDF
    Abstract.: This paper describes the European Space Agency (ESA) experiments devoted to study thermodiffusion of fluid mixtures in microgravity environment, where sedimentation and convection do not affect the mass flow induced by the Soret effect. First, the experiments performed on binary mixtures in the IVIDIL and GRADFLEX experiments are described. Then, further experiments on ternary mixtures and complex fluids performed in DCMIX and planned to be performed in the context of the NEUF-DIX project are presented. Finally, multi-component mixtures studied in the SCCO project are detailed

    Phenomenological models of synaptic plasticity based on spike timing

    Get PDF
    Synaptic plasticity is considered to be the biological substrate of learning and memory. In this document we review phenomenological models of short-term and long-term synaptic plasticity, in particular spike-timing dependent plasticity (STDP). The aim of the document is to provide a framework for classifying and evaluating different models of plasticity. We focus on phenomenological synaptic models that are compatible with integrate-and-fire type neuron models where each neuron is described by a small number of variables. This implies that synaptic update rules for short-term or long-term plasticity can only depend on spike timing and, potentially, on membrane potential, as well as on the value of the synaptic weight, or on low-pass filtered (temporally averaged) versions of the above variables. We examine the ability of the models to account for experimental data and to fulfill expectations derived from theoretical considerations. We further discuss their relations to teacher-based rules (supervised learning) and reward-based rules (reinforcement learning). All models discussed in this paper are suitable for large-scale network simulations

    Brain Deletion of Insulin Receptor Substrate 2 Disrupts Hippocampal Synaptic Plasticity and Metaplasticity

    Get PDF
    Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2)

    Modifiable risk factors associated with prediabetes in men and women: A cross-sectional analysis of the cohort study in primary health care on the evolution of patients with prediabetes

    Get PDF
    Background: Prediabetes is a high-risk state for diabetes development, but little is known about the factors associated with this state. The aim of the study was to identify modifiable risk factors associated with the presence of prediabetes in men and women. Methods: Cohort Study in Primary Health Care on the Evolution of Patients with Prediabetes (PREDAPS-Study) is a prospective study on a cohort of 1184 subjects with prediabetes and another cohort of 838 subjects without glucose metabolism disorders. It is being conducted by 125 general practitioners in Spain. Data for this analysis were collected during the baseline stage in 2012. The modifiable risk factors included were: smoking habit, alcohol consumption, low physical activity, inadequate diet, hypertension, dyslipidemia, and obesity. To assess independent association between each factor and prediabetes, odds ratios (ORs) were estimated using logistic regression models. Results: Abdominal obesity, low plasma levels of high-density lipoprotein cholesterol (HDL-cholesterol), and hypertension were independently associated with the presence of prediabetes in both men and women. After adjusting for all factors, the respective ORs (95% Confidence Intervals) were 1.98 (1.41-2.79), 1.88 (1.23-2.88) and 1.86 (1.39-2.51) for men, and 1.89 (1.36-2.62), 1.58 (1.12-2.23) and 1.44 (1.07-1.92) for women. Also, general obesity was a risk factor in both sexes but did not reach statistical significance among men, after adjusting for all factors. Risky alcohol consumption was a risk factor for prediabetes in men, OR 1.49 (1.00-2.24). Conclusions: Obesity, low HDL-cholesterol levels, and hypertension were modifiable risk factors independently related to the presence of prediabetes in both sexes. The magnitudes of the associations were stronger for men than women. Abdominal obesity in both men and women displayed the strongest association with prediabetes. The findings suggest that there are some differences between men and women, which should be taken into account when implementing specific recommendations to prevent or delay the onset of diabetes in adult population
    corecore