430 research outputs found
Outward expansion of the lunar wake: ARTEMIS observations
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95030/1/grl29516.pd
Massive Charged Scalar Quasinormal Modes of Reissner-N\"ordstrom Black Hole Surrounded by Quintessence
We evaluate the complex frequencies of the normal modes for the massive
charged scalar field perturbations around a Reissner-N\"ordstrom black hole
surrounded by a static and spherically symmetric quintessence using third order
WKB approximation approach. Due to the presence of quintessence, quasinormal
frequencies damp more slowly. We studied the variation of quasinormal
frequencies with charge of the black bole, mass and charge of perturbating
scalar field and the quintessential state parameter.Comment: 9 pages, 9 figures and one tabl
Router-level community structure of the Internet Autonomous Systems
The Internet is composed of routing devices connected between them and
organized into independent administrative entities: the Autonomous Systems. The
existence of different types of Autonomous Systems (like large connectivity
providers, Internet Service Providers or universities) together with
geographical and economical constraints, turns the Internet into a complex
modular and hierarchical network. This organization is reflected in many
properties of the Internet topology, like its high degree of clustering and its
robustness.
In this work, we study the modular structure of the Internet router-level
graph in order to assess to what extent the Autonomous Systems satisfy some of
the known notions of community structure. We show that the modular structure of
the Internet is much richer than what can be captured by the current community
detection methods, which are severely affected by resolution limits and by the
heterogeneity of the Autonomous Systems. Here we overcome this issue by using a
multiresolution detection algorithm combined with a small sample of nodes. We
also discuss recent work on community structure in the light of our results
Hypoxia-Induced Down-Regulation of Neprilysin by Histone Modification in Mouse Primary Cortical and Hippocampal Neurons
Amyloid β-peptide (Aβ) accumulation leads to neurodegeneration and Alzheimer's disease (AD). Aβ metabolism is a dynamic process in the Aβ production and clearance that requires neprilysin (NEP) and other enzymes to degrade Aβ. It has been reported that NEP expression is significantly decreased in the brain of AD patients. Previously we have documented hypoxia is a risk factor for Aβ generation in vivo and in vitro through increasing Aβ generation by altering β-cleavage and γ-cleavage of APP and down-regulating NEP, and causing tau hyperphosphorylation. Here, we investigated the molecular mechanisms of hypoxia-induced down-regulation of NEP. We found a significant decrease in NEP expression at the mRNA and protein levels after hypoxic treatment in mouse primary cortical and hippocampal neurons. Chromatin immunoprecipitation (ChIP) assays and relative quantitative PCR (q-PCR) revealed an increase of histone H3-lysine9 demethylation (H3K9me2) and a decrease of H3 acetylation (H3-Ace) in the NEP promoter regions following hypoxia. In addition, we found that hypoxia caused up-regulation of histone methyl transferase (HMT) G9a and histone deacetylases (HDACs) HDAC-1. Decreased expression of NEP during hypoxia can be prevented by application with the epigenetic regulators 5-Aza-2′-deoxycytidine (5-Aza), HDACs inhibitor sodium valproate (VA), and siRNA-mediated knockdown of G9a or HDAC1. DNA methylation PCR data do not support that hypoxia affects the methylation of NEP promoters. This study suggests that hypoxia may down-regulate NEP by increasing H3K9me2 and decreasing H3-Ace modulation
Quasiparticle Line Shape of Sr2RuO4 and its Relation to Anisotropic Transport
The bulk-representative low-energy spectrum of Sr2RuO4 can be directly measured by angle-resolved photoemission. We find that the quasiparticle spectral line shape of Sr2RuO4 is sensitive to both temperature and momentum. Along the (0, 0)-(π, 0) direction, both gamma and ß bands develop a sharp quasiparticle peak near kF at low temperatures, but as the temperature increases the spectra quickly lose coherent weight and become broad backgrounds above ~130 K, which is the metal-nonmetal crossover temperature, TM, in the c-axis resistivity. However, spectra along the (0, 0)-(π, π) direction evolve smoothly across TM. A simple transport model can describe both in-plane and c-axis resistivity in terms of the quasiparticle line shape. Comparisons are also made to the cuprates, with implications for two dimensionality, magnetic fluctuations, and superconductivit
Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires
The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement
E17K substitution in AKT1 in prostate cancer
Background:The phosphatidylinositol 3-kinase (PI3K)-AKT pathway is activated in many cancers. Mutational hotspots in AKT1 and in the regulatory and catalytic subunits of PI3K have been detected in multiple tumour types. In AKT1, the E17K substitution leads to a PI3K-independent activation of AKT1.Methods:A mutational profiling of AKT1 and of the mutational hotspots in PIK3CA and PIK3R1 was carried out in samples from primary and recurrent prostate tumours.Results:We show that, in prostate cancer, AKT1(E17K) had a prevalence of 1.4%. The mutation seemed to be associated with a favourable clinical course but it was not associated with a specific tumour growth pattern. Activating mutations in PIK3CA or PIK3R1 were not found in prostate cancer.Conclusion:The E17K substitution in AKT1 is rare in prostate cancer. It seems associated with a favourable clinical outcome but not with a specific histology of the tumo
Alpha-santalol, a chemopreventive agent against skin cancer, causes G2/M cell cycle arrest in both p53-mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells
<p>Abstract</p> <p>Background</p> <p>α-Santalol, an active component of sandalwood oil, has shown chemopreventive effects on skin cancer in different murine models. However, effects of α-santalol on cell cycle have not been studied. Thus, the objective of this study was to investigate effects of α-santalol on cell cycle progression in both p53 mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells to elucidate the mechanism(s) of action.</p> <p>Methods</p> <p>MTT assay was used to determine cell viability in A431 cells and UACC-62; fluorescence-activated cell sorting (FACS) analysis of propidium iodide staining was used for determining cell cycle distribution in A431 cells and UACC-62 cells; immunoblotting was used for determining the expression of various proteins and protein complexes involved in the cell cycle progression; siRNA were used to knockdown of p21 or p53 in A431 and UACC-62 cells and immunofluorescence microscopy was used to investigate microtubules in UACC-62 cells.</p> <p>Results</p> <p>α-Santalol at 50-100 μM decreased cell viability from 24 h treatment and α-santalol at 50 μM-75 μM induced G<sub>2</sub>/M phase cell cycle arrest from 6 h treatment in both A431 and UACC-62 cells. α-Santalol altered expressions of cell cycle proteins such as cyclin A, cyclin B1, Cdc2, Cdc25c, p-Cdc25c and Cdk2. All of these proteins are critical for G<sub>2</sub>/M transition. α-Santalol treatment up-regulated the expression of p21 and suppressed expressions of mutated p53 in A431 cells; whereas, α-santalol treatment increased expressions of wild-type p53 in UACC-62 cells. Knockdown of p21 in A431 cells, knockdown of p21 and p53 in UACC-62 cells did not affect cell cycle arrest caused by α-santalol. Furthermore, α-santalol caused depolymerization of microtubules similar to vinblastine in UACC-62 cells.</p> <p>Conclusions</p> <p>This study for the first time identifies effects of α-santalol in G<sub>2</sub>/M phase arrest and describes detailed mechanisms of G<sub>2</sub>/M phase arrest by this agent, which might be contributing to its overall cancer preventive efficacy in various mouse skin cancer models.</p
- …