150,802 research outputs found

    Inner product computation for sparse iterative solvers on\ud distributed supercomputer

    Get PDF
    Recent years have witnessed that iterative Krylov methods without re-designing are not suitable for distribute supercomputers because of intensive global communications. It is well accepted that re-engineering Krylov methods for prescribed computer architecture is necessary and important to achieve higher performance and scalability. The paper focuses on simple and practical ways to re-organize Krylov methods and improve their performance for current heterogeneous distributed supercomputers. In construct with most of current software development of Krylov methods which usually focuses on efficient matrix vector multiplications, the paper focuses on the way to compute inner products on supercomputers and explains why inner product computation on current heterogeneous distributed supercomputers is crucial for scalable Krylov methods. Communication complexity analysis shows that how the inner product computation can be the bottleneck of performance of (inner) product-type iterative solvers on distributed supercomputers due to global communications. Principles of reducing such global communications are discussed. The importance of minimizing communications is demonstrated by experiments using up to 900 processors. The experiments were carried on a Dawning 5000A, one of the fastest and earliest heterogeneous supercomputers in the world. Both the analysis and experiments indicates that inner product computation is very likely to be the most challenging kernel for inner product-based iterative solvers to achieve exascale

    Minimizing synchronizations in sparse iterative solvers for distributed supercomputers

    Get PDF
    Eliminating synchronizations is one of the important techniques related to minimizing communications for modern high performance computing. This paper discusses principles of reducing communications due to global synchronizations in sparse iterative solvers on distributed supercomputers. We demonstrates how to minimizing global synchronizations by rescheduling a typical Krylov subspace method. The benefit of minimizing synchronizations is shown in theoretical analysis and is verified by numerical experiments using up to 900 processors. The experiments also show the communication complexity for some structured sparse matrix vector multiplications and global communications in the underlying supercomputers are in the order P1/2.5 and P4/5 respectively, where P is the number of processors and the experiments were carried on a Dawning 5000A

    GRB 060206: hints of precession of the central engine?

    Get PDF
    Aims. The high-redshift (z=4.048) gamma-ray burst GRB 060206 showed unusual behavior, with a significant rebrightening by a factor of ~4 at about 3000 s after the burst. We argue that this rebrightening implies that the central engine became active again after the main burst produced by the first ejecta, then drove another more collimated jet-like ejecta with a larger viewing angle. The two ejecta both interacted with the ambient medium, giving rise to forward shocks that propagated into the ambient medium and reverse shocks that penetrated into the ejecta. The total emission was a combination of the emissions from the reverse- and forward- shocked regions. We discuss how this combined emission accounts for the observed rebrightening. Methods. We apply numerical models to calculate the light curves from the shocked regions, which include a forward shock originating in the first ejecta and a forward-reverse shock for the second ejecta. Results. We find evidence that the central engine became active again 2000 s after the main burst. The combined emission produced by interactions of these two ejecta with the ambient medium can describe the properties of the afterglow of this burst. We argue that the rapid rise in brightness at ~3000 s in the afterglow is due to the off-axis emission from the second ejecta. The precession of the torus or accretion disk of the central engine is a natural explanation for the departure of the second ejecta from the line of sight

    GRB 060206: Evidence of Precession of Central Engine

    Get PDF
    The high-redshift (z = 4.048) gamma-ray burst GRB 060206 showed unusual behavior, with a significant re-brightening about 3000 s after the burst. We assume that the central engine became active again 2000 s after the main burst and drove another more collimated off-axis jet. The two jets both interacted with the ambient medium and contributed to the whole emission. We numerically fit this optical afterglow from the two jets using the forward-shock model and the forward-reverse shock model. Combining with the zero time effect, we suggest that the fast rise at ~3000 s in the afterglow was due to the off-axis emission from the second jet. The precession of the torus or accretion disk of the gamma ray burst engine is the natural explanation for the symmetry axes of these two jets not to lie on the same line

    Localization of fermionic fields on braneworlds with bulk tachyon matter

    Full text link
    Recently, Pal and Skar in [arXiv:hep-th/0701266] proposed a mechanism to arise the warped braneworld models from bulk tachyon matter, which are endowed with a thin brane and a thick brane. In this framework, we investigate localization of fermionic fields on these branes. As in the 1/2 spin case, the field can be localized on both the thin and thick branes with inclusion of scalar background. In the 3/2 spin extension, the general supergravity action coupled to chiral supermultiplets is considered to produce the localization on both the branes as a result.Comment: 9 pages, no figure

    Characterizing Some Gaia Alerts with LAMOST and SDSS

    Full text link
    Gaia is regularly producing Alerts on objects where photometric variability has been detected. The physical nature of these objects has often to be determined with the complementary observations from ground-based facilities. We have compared the list of Gaia Alerts (until 20181101) with archival LAMOST and SDSS spectroscopic data. The date of the ground-based observation rarely corresponds to the date of the Alert, but this allows at least the identification of the source if it is persistent, or the host galaxy if the object was only transient like a supernova. A list of Gaia Nuclear Transients from Kostrzewa-Rutkowska et al. (2018) has been included in this search also. We found 26 Gaia Alerts with spectra in LAMOST+SDSS labelled as stars (12 with multi-epoch spectra). A majority of them are CVs. Similarly 206 Gaia Alerts have associated spectra labelled as galaxies (49 with multi-epoch spectra). Those spectra were generally obtained on a date different from the Alert date, are mostly emission-line galaxies, leading to the suspicion that most of the Alerts were due to a SN. As for the GNT list, we found 55 associated spectra labelled as galaxies (13 with multi-epoch spectra). In two galaxies, Gaia17aal and GNTJ170213+2543, was the date of the spectroscopic observation close enough to the Alert date: we find a trace of the SN itself in their LAMOST spectrum, both classified here as a type Ia SN. The GNT sample has a higher proportion of AGNs, suggesting that some of the detected variations are also due to the AGN itself. Similar for Quasars, we found 30 Gaia Alerts but 68 GNT cases have single epoch quasar spectra, while 12 plus 23 have multi-epoch spectra. For ten out of these 35, their multi-epoch spectra show appearance or disappearance of the broad Balmer lines and also variations in the continuum, qualifying them as "Changing Look Quasars".Comment: Accepted for publication in APSS, 14 pages, 8 figures, 2 table

    Double-layer Perfect Metamaterial Absorber and Its Application for RCS Reduction of Antenna

    Get PDF
    To reduce the radar cross section (RCS) of a circularly polarized (CP) tilted beam antenna, a double-layer perfect metamaterial absorber (DLPMA) in the microwave frequency is proposed. The DLPMA exhibits a wider band by reducing the distance between the three absorption peaks. Absorbing characteristics are analyzed and the experimental results demonstrate that the proposed absorber works well from 5.95 GHz to 6.86 GHz (relative bandwidth 14.1%) with the thickness of 0.5 mm. Then, the main part of perfect electric conductor ground plane of the CP tilted beam antenna is covered by the DLPMA. Simu¬lated and experimental results reveal that the novel antenna performs well from 5.5 GHz to 7 GHz, and its monostatic RCS is reduced significantly from 5.8 GHz to 7 GHz. The agreement between measured and simulated data validates the present design

    An advanced meshless method for time fractional diffusion equation

    Get PDF
    Recently, because of the new developments in sustainable engineering and renewable energy, which are usually governed by a series of fractional partial differential equations (FPDEs), the numerical modelling and simulation for fractional calculus are attracting more and more attention from researchers. The current dominant numerical method for modeling FPDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings including difficulty in simulation of problems with the complex problem domain and in using irregularly distributed nodes. Because of its distinguished advantages, the meshless method has good potential in simulation of FPDEs. This paper aims to develop an implicit meshless collocation technique for FPDE. The discrete system of FPDEs is obtained by using the meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of fractional partial differential equations
    corecore