5,971 research outputs found

    Optimum maneuvers of hypervelocity vehicles

    Get PDF
    Optimum maneuvering of glide vehicle at hypersonic speed

    RAPID DEPLOYMENT: A VITAL TRUMP

    Get PDF

    Geometry-induced pulse instability in microdesigned catalysts: the effect of boundary curvature

    Get PDF
    We explore the effect of boundary curvature on the instability of reactive pulses in the catalytic oxidation of CO on microdesigned Pt catalysts. Using ring-shaped domains of various radii, we find that the pulses disappear (decollate from the inert boundary) at a turning point bifurcation, and trace this boundary in both physical and geometrical parameter space. These computations corroborate experimental observations of pulse decollation.Comment: submitted to Phys. Rev.

    Comparison of Human Social Brain Activity During Eye-Contact With Another Human and a Humanoid Robot

    Get PDF
    Robot design to simulate interpersonal social interaction is an active area of research with applications in therapy and companionship. Neural responses to eye-to-eye contact in humans have recently been employed to determine the neural systems that are active during social interactions. Whether eye-contact with a social robot engages the same neural system remains to be seen. Here, we employ a similar approach to compare human-human and human-robot social interactions. We assume that if human-human and human-robot eye-contact elicit similar neural activity in the human, then the perceptual and cognitive processing is also the same for human and robot. That is, the robot is processed similar to the human. However, if neural effects are different, then perceptual and cognitive processing is assumed to be different. In this study neural activity was compared for human-to-human and human-to-robot conditions using near infrared spectroscopy for neural imaging, and a robot (Maki) with eyes that blink and move right and left. Eye-contact was confirmed by eye-tracking for both conditions. Increased neural activity was observed in human social systems including the right temporal parietal junction and the dorsolateral prefrontal cortex during human-human eye contact but not human-robot eye-contact. This suggests that the type of human-robot eye-contact used here is not sufficient to engage the right temporoparietal junction in the human. This study establishes a foundation for future research into human-robot eye-contact to determine how elements of robot design and behavior impact human social processing within this type of interaction and may offer a method for capturing difficult to quantify components of human-robot interaction, such as social engagement

    Simulated Greenland Surface Mass Balance in the GISS ModelE2 GCM: Role of the Ice Sheet Surface

    Get PDF
    The rate of growth or retreat of the Greenland and Antarctic ice sheets remains a highly uncertain component of future sea level change. Here we examine the simulation of Greenland ice sheet surface mass balance (GrIS SMB) in the NASA Goddard Institute for Space Studies (GISS) ModelE2 General Circulation Model (GCM). GCMs are often limited in their ability to represent SMB compared with polarregion Regional Climate Models (RCMs). We compare ModelE2 simulated GrIS SMB for presentday (19962005) simulations with fixed ocean conditions, at a spatial resolution of 2 latitude by 2.5 longitude (~200 km), with SMB simulated by the Modle Atmosphrique Rgionale (MAR) RCM (19962005 at a 25 km resolution). ModelE2 SMB agrees well with MAR SMB on the whole, but there are distinct spatial patterns of differences and large differences in some SMB components. The impact of changes to the ModelE2 surface are tested, including a subgridscale representation of SMB with surface elevation classes. This has a minimal effect on ice sheetwide SMB, but corrects local biases. Replacing fixed surface albedo with satellitederived values and an agedependent scheme has a larger impact, increasing simulated melt by 60100%. We also find that lower surface albedo can enhance the effects of elevation classes. Reducing ModelE2 surface roughness length to values closer to MAR reduces sublimation by ~50%. Further work is required to account for meltwater refreezing in ModelE2, and to understand how differences in atmospheric processes and model resolution influence simulated SMB

    Superconductivity and Stoichiometry in the BSCCO-family Materials

    Full text link
    We report on magnetization, c-axis and ab-plane resistivity, critical current, electronic band structure and superconducting gap properties. Bulk measurements and photoemission data were taken on similar samples.Comment: 4 pages, latex, to be published in Journal of Superconductivity. two figures available from Jian Ma at [email protected]

    Metabolic Changes Following a 1-Year Diet and Exercise Intervention in Patients With Type 2 Diabetes

    Get PDF
    Objective—To characterize the relationships among longterm improvements in peripheral insulin sensitivity (glucose disposal rate [GDR]), fasting glucose, and free fatty acids (FFAs) and concomitant changes in weight and adipose tissue mass and distribution induced by lifestyle intervention in obese individuals with type 2 diabetes. Research Design And Methods—We measured GDR, fasting glucose, and FFAs during a euglycemic clamp and adipose tissue mass and distribution, organ fat, and adipocyte size by dual-energy X-ray absorptiometry, CT scan, and adipose tissue biopsy in 26 men and 32 women in the Look-AHEAD trial before and after 1 year of diet and exercise aimed at weight loss. Results—Weight and fasting glucose decreased significantly (P _ 0.0001) and significantly more in men than in women (_12 vs. _8% and _16 vs. _7%, respectively; P _ 0.05), while FFAs during hyperinsulinemia decreased and GDR increased significantly (P _ 0.00001) and similarly in both sexes (_53 vs. _41% and 63 vs. 43%; P _ NS). Men achieved a more favorable fat distribution by losing more from upper compared with lower and from deeper compared with superficial adipose tissue depots (P _ 0.01). Decreases in weight and adipose tissue mass predicted improvements in GDR but not in fasting glucose or fasting FFAs; however, decreases in FFAs during hyperinsulinemia significantly determined GDR improvements. Hepatic fat was the only regional fat measure whose change contributed independently to changes in metabolic variables. Conclusions—Patients with type 2 diabetes undergoing a 1-year lifestyle intervention had significant improvements in GDR, fasting glucose, FFAs and adipose tissue distribution. However, changes in overall weight (adipose tissue mass) and hepatic fat were the most important determinants of metabolic improvements.Jeanine B. Albu, Leonie K. Heilbronn, David E. Kelley, Steven R. Smith, Koichiro Azuma, Evan S. Berk, F. Xavier Pi-Sunyer, Eric Ravussin, and the Look AHEAD Adipose Research Grou

    Community engagement and giving back among North American Indigenous youth

    Get PDF
    “Volunteer participation” refers to free engagement in activities that benefit someone or something else. Volunteering can produce many benefits for individuals and communities. However, current research examining volunteer participation often excludes diverse viewpoints on what constitutes volunteering, particularly the perspectives of North American Indigenous youth. This oversight may result from researchers’ conceptualization and measurement of volunteering from a Western perspective. Utilizing data from the Healing Pathways (HP) project, a longitudinal, community-based participatory study in partnership with eight Indigenous communities in the United States and Canada, we provide a detailed description of volunteer participation and community and cultural engagement. Overall, we employ a community cultural wealth lens to emphasize the various strengths and sources of resilience that these communities possess. At the same time, we encourage scholars and the wider society to broaden their views of volunteering, community involvement, and giving back.Sociolog

    Inhibition of APE1/Ref-1 redox activity rescues human retinal pigment epithelial cells from oxidative stress and reduces choroidal neovascularization

    Get PDF
    The effectiveness of current treatment for age related macular degeneration (AMD) by targeting one molecule is limited due to its multifactorial nature and heterogeneous pathologies. Treatment strategy to target multiple signaling pathways or pathological components in AMD pathogenesis is under investigation for better clinical outcome. Inhibition of the redox function of apurinic endonuclease 1/redox factor-1 (APE1) was found to suppress endothelial angiogenesis and promote neuronal cell recovery, thereby may serve as a potential treatment for AMD. In the current study, we for the first time have found that a specific inhibitor of APE1 redox function by a small molecule compound E3330 regulates retinal pigment epithelium (RPEs) cell response to oxidative stress. E3330 significantly blocked sub-lethal doses of oxidized low density lipoprotein (oxLDL) induced proliferation decline and senescence advancement of RPEs. At the same time, E3330 remarkably decreased the accumulation of intracellular reactive oxygen species (ROS) and down-regulated the productions of monocyte chemoattractant protein-1 (MCP-1) and vascular endothelial growth factor (VEGF), as well as attenuated the level of nuclear factor-κB (NF-κB) p65 in RPEs. A panel of stress and toxicity responsive transcription factors that were significantly upregulated by oxLDL was restored by E3330, including Nrf2/Nrf1, p53, NF-κB, HIF1, CBF/NF-Y/YY1, and MTF-1. Further, a single intravitreal injection of E3330 effectively reduced the progression of laser-induced choroidal neovascularization (CNV) in mouse eyes. These data revealed that E3330 effectively rescued RPEs from oxidative stress induced senescence and dysfunctions in multiple aspects in vitro, and attenuated laser-induced damages to RPE–Bruch׳s membrane complex in vivo. Together with its previously established anti-angiogenic and neuroprotection benefits, E3330 is implicated for potential use for AMD treatment

    Evolution of the redox function in mammalian Apurinic/ apyrimidinic endonuclease

    Get PDF
    Human apurinic/apyrimidinic endonuclease (hApe1) encodes two important functional activities: an essential base excision repair (BER) activity and a redox activity that regulates expression of a number of genes through reduction of their transcription factors, AP-1, NFκB, HIF-1α, CREB, p53 and others. The BER function is highly conserved from prokaryotes (E. coli exonuclease III) to humans (hApe1). Here, we provide evidence supporting a redox function unique to mammalian Apes. An evolutionary analysis of Ape sequences reveals that, of the 7 Cys residues, Cys 93, 99, 208, 296, and 310 are conserved in both mammalian and non-mammalian vertebrate Apes, while Cys 65 is unique to mammalian Apes. In the zebrafish Ape (zApe), selected as the vertebrate sequence most distant from human, the residue equivalent to Cys 65 is Thr 58. The wild-type zApe enzyme was tested for redox activity in both in vitro EMSA and transactivation assays and found to be inactive, similar to C65A hApe1. Substitution of Thr 58 with Cys in zApe, however, resulted in a redox active enzyme, suggesting that a Cys residue in this position is indeed critical for redox function. In order to further probe differences between redox active and inactive enzymes, we have determined the crystal structures of vertebrate redox inactive enzymes, the C65A human Ape1 enzyme and the zApe enzyme at 1.9 and 2.3 Å, respectively. Our results provide new insights on the redox function and highlight a dramatic gain-of-function activity for Ape1 in mammals not found in non-mammalian vertebrates or lower organisms
    corecore