37 research outputs found

    Particle growing mechanisms in Ag-ZrO2 and Au-ZrO2 granular films obtained by pulsed laser deposition

    Full text link
    Thin films consisting of Ag and Au nanoparticles embedded in amorphous ZrO2 matrix were grown by pulsed laser deposition in a wide range of metal volume concentrations in the dielectric regime (0.08<x(Ag)<0.28 and 0.08<x(Au)<0.52). High resolution transmission electron microscopy (TEM) showed regular distribution of spherical Au and Ag nanoparticles having very sharp interfaces with the amorphous matrix. Mean particle size determined from X-ray diffraction agreed with direct TEM observation. The silver mean diameter increases more abruptly with metal volume content than that corresponding to gold particles prepared under the same conditions. Two mechanisms of particle growing are observed: nucleation and particle coalescence, their relative significance being different in both granular systems, which yields very different values of the percolation threshold (xc(Ag)~0.28 and xc(Au)~0.52).Comment: 6 figure

    SEOM clinical guideline for treatment of kidney cancer (2017)

    Get PDF
    The goal of this article is to provide recommendations about the management of kidney cancer. Based on pathologic and molecular features, several kidney cancer variants were described. Nephron-sparing techniques are the gold standard of localized disease. After a randomized trial, sunitinib could be considered in adjuvant treatment in high-risk patients. Patients with advanced disease constitute a heterogeneous population. Prognostic classification should be considered. Both sunitinib and pazopanib are the standard options for first-line systemic therapy in advanced renal cell carcinoma. Based on the results of two randomized trials, both nivolumab and cabozantinib should be considered the standard for second and further lines of therapy. Response evaluation for present therapies is a challenge

    Finite-Size and surface effects in maghemite nanoparticles: Monte Carlo simulations

    Get PDF
    Finite-size and surface effects in fine particle systems are investigated by Monte Carlo simulation of a model of a γ\gamma-Fe2_2O3_3 (maghemite) single particle. Periodic boundary conditions have been used to simulate the bulk properties and the results compared with those for a spherical shaped particle with free boundaries to evidence the role played by the surface on the anomalous magnetic properties displayed by these systems at low temperatures. Several outcomes of the model are in qualitative agreement with the experimental findings. A reduction of the magnetic ordering temperature, spontaneous magnetization, and coercive field is observed as the particle size is decreased. Moreover, the hysteresis loops become elongated with high values of the differential susceptibility, resembling those from frustrated or disordered systems. These facts are consequence of the formation of a surface layer with higher degree of magnetic disorder than the core, which, for small sizes, dominates the magnetization processes of the particle. However, in contradiction with the assumptions of some authors, our model does not predict the freezing of the surface layer into a spin-glass-like state. The results indicate that magnetic disorder at the surface simply facilitates the thermal demagnetization of the particle at zero field, while the magnetization is increased at moderate fields, since surface disorder diminishes ferrimagnetic correlations within the particle. The change in shape of the hysteresis loops with the particle size demonstrates that the reversal mode is strongly influenced by the reduced atomic coordination and disorder at the surface.Comment: Twocolumn RevTex format. 19 pages, 15 Figures included. Submitted to Phys. Rev.

    Phase II multicentre study of docetaxel plus cisplatin in patients with advanced urothelial cancer

    Get PDF
    A multicentre phase II trial was undertaken to evaluate the activity and toxicity of docetaxel plus cisplatin as first-line chemotherapy in patients with urothelial cancer. Thirty-eight patients with locally advanced or metastatic transitional-cell carcinoma of the bladder, renal pelvis or ureter received the combination of docetaxel 75 mg m−2 and cisplatin 75 mg m−2 on day 1 and repeated every 21 days, to a maximum of six cycles. The median delivered dose-intensity was 98% (range 79–102%) of the planned dose for both drugs. There were seven complete responses and 15 partial responses, for and overall response rate of 58% (95% CI, 41–74%). Responses were even seen in three patients with hepatic metastases. The median time to progression was 6.9 months, and the median overall survival was 10.4 months. Two patients who achieved CR status remain free of disease at 4 and 3 years respectively. Grade 3–4 granulocytopenia occurred in 27 patients, resulting in five episodes of febrile neutropenia. There was one toxic death in a patient with grade 4 granulocytopenia who developed acute abdomen. Grade 3–4 thrombocytopenia was rare (one patient). Other grade 3–4 toxicities observed were anaemia (three patients), vomiting (five patients), diarrhoea (four patients), peripheral neuropathy (two patients) and non-neutropenic infections (seven patients). Docetaxel plus cisplatin is an effective and well-tolerated regimen for the treatment of advanced urothelial cancer, and warrants further investigation

    Lung resistance-related protein as a predictor of clinical outcome in advanced testicular germ-cell tumours

    Get PDF
    This study was undertaken to investigate the expression and predictive value for outcome of multidrug resistance-associated (MDR) proteins P-glycoprotein (Pgp), MRP1, BCRP, and LRP, in advanced testicular germ-cell tumours (TGCT). Paraffin-embedded sections from 56 previously untreated patients with metastatic TGCT were immunostained for Pgp, MRP1, BCRP, and LRP. All patients received platinum-based chemotherapy after orchidectomy. Immunostaining was related to clinicopathological parameters, response to chemotherapy, and outcome. Strong and intermediate expressions of the different MDR-related proteins were: 27 and 41% (Pgp), 54 and 37% (MRP1), 86 and 7% (BCRP), and 14 and 29% (LRP). P-glycoprotein and MRP1 associated, respectively, to low AFP (P=0.026) and high LDH levels (P=0.014), whereas LRP expression associated with high beta-hCG levels (P=0.003) and stage IV tumours (P=0.029). No correlation was found between Pgp, MRP1, and BCRP expression and response to chemotherapy and survival. In contrast, patients with LRP-positive tumours (strong or intermediate expression) had shorter progression-free (P=0.0006) and overall survival (P=0.0116) than LRP-negative patients, even after individual log-rank adjustments by statistically associated variables. Our data suggest that a positive LRP immunostaining at the time of diagnosis in metastatic TGCT is associated with an adverse clinical outcome

    Metallic Nanoparticles Embedded in a Dielectric Matrix: Growth Mechanisms and Percolation

    No full text
    We present a study of the preparation and structural characterization of granular Ag-ZrO2, Co-ZrO2, and Au-ZrO2 thin films grown by pulsed laser deposition (PLD) in a wide range of volume fraction x of metal (0.08<xAg<0.28, 0.06<xCo<0.40, and 0.08<xAu<0.55). High-resolution transmission electron microscopy (HRTEM) showed regular distribution of spherical Au, Co, and Au nanoparticles having very sharp interfaces with the amorphous matrix. The structural results are compared aiming to stress the effect of the actual microstructure on the percolation threshold. Two different mechanisms of particle growing as a function of the metal content are evidenced: nucleation and particle coalescence, with their relative significance depending strongly on the type of metal, giving rise to very different values of the percolation threshold (xc(Ag)∼0.28, xc(Co)∼0.35, and xc(Au)∼0.55)

    Interface effects in the magneto-optical properties of Co nanoparticles in dielectric matrix

    Get PDF
    3 pages, 3 figures.The authors present a study of the optical and magneto-optical properties of Co nanoparticles embedded in two amorphous dielectric matrices with different refractive indices such as ZrO2 and Al2O3. The nanostructured films were prepared by pulsed laser deposition, and the morphology and structure were studied by different characterization techniques. The optical and magneto-optical (MO) properties of the Co inside the nanoparticles differ from those of the bulk material; in particular, a decrease in the MO constants is found. These properties are found to depend on the nanoparticle size and on the dielectric matrix, due to the different nanoparticle-matrix interfaces appearing in both cases.This work was financed by the Spanish CICYT (MAT2005-06508-C02-01 and MAT2006-03999) and Catalan DURSI (2005SGR00969). Two of the authors (C.C. and J.M.) acknowledge financial support from the MEC through FPI program and from the ESF through I3P program.Peer reviewe

    Tunneling magnetoresistance in Co-ZrO2 granular thin films

    Get PDF
    Granular films composed of well defined nanometric Co particles embedded in an insulating ZrO2 matrix were prepared by pulsed laser depositon in a wide range of Co volume concentrations 0.15 x 0.43. High-resolution transmission electron microscopy TEM showed very sharp interfaces between the crystalline particles and the amorphous matrix. Narrow particle size distributions were determined from TEM and by fitting the low-field magnetic susceptibility and isothermal magnetization in the paramagnetic regime to a distribution of Langevin functions. The magnetic particle size varies little for Co volume concentrations x 0.32 and increases as the percolation limit is approached. The tunneling magnetoresistance TMR was successfully reproduced using the Inoue-Maekawa model. The maximum value of TMR was temperatureindependent within 50–300 K, and largely increased at low T, suggesting the occurrence of higher-order tunneling processes. Consequently, the tunneling conductance and TMR in clean granular metals are dominated by the Coulomb gap and the inherent particle size distribution
    corecore