3,192 research outputs found
A novel explicit-implicit coupled solution method of SWE for long-term river meandering process induced by dam break
YesLarge amount of sediment deposits in the reservoir area can cause dam break, which not only leads to an immeasurable loss to the society, but also the sediments from the reservoir can be transported to generate further problems in the downstream catchment. This study aims to investigate the short-to-long term sediment transport and channel meandering process under such a situation. A coupled explicit-implicit technique based on the Euler-Lagrangian method (ELM) is used to solve the hydrodynamic equations, in which both the small and large time steps are used separately for the fluid and sediment marching. The main feature of the model is the use of the Characteristic-Based Split (CBS) method for the local time step iteration to correct the ELM traced lines. Based on the solved flow field, a standard Total Variation Diminishing (TVD) finite volume scheme is applied to solve the sediment transportation equation. The proposed model is first validated by a benchmark dambreak water flow experiment to validate the efficiency and accuracy of ELM modelling capability. Then an idealized engineering dambreak flow is used to investigate the long-term downstream channel meandering process with nonuniform sediment transport. The results showed that both the hydrodynamic and morphologic features have been well predicted by the proposed coupled model.This research work is supported by Sichuan Science and Technology Support Plan (2014SZ0163), Start-up Grant for the Young Teachers of Sichuan University (2014SCU11056), and Open Research Fund of the State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (SKLH 1409; 1512)
Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model
We study exactly both the ground-state fidelity susceptibility and bond-bond
correlation function in the Kitaev honeycomb model. Our results show that the
fidelity susceptibility can be used to identify the topological phase
transition from a gapped A phase with Abelian anyon excitations to a gapless B
phase with non-Abelian anyon excitations. We also find that the bond-bond
correlation function decays exponentially in the gapped phase, but
algebraically in the gapless phase. For the former case, the correlation length
is found to be , which diverges
around the critical point .Comment: 7 pages, 6 figure
Heavy-tailed statistics in short-message communication
Short-message (SM) is one of the most frequently used communication channels
in the modern society. In this Brief Report, based on the SM communication
records provided by some volunteers, we investigate the statistics of SM
communication pattern, including the interevent time distributions between two
consecutive short messages and two conversations, and the distribution of
message number contained by a complete conversation. In the individual level,
the current empirical data raises a strong evidence that the human activity
pattern, exhibiting a heavy-tailed interevent time distribution, is driven by a
non-Poisson nature.Comment: 4 pages, 4 figures and 1 tabl
Interactions of energetic electrons with ULF waves triggered by interplanetary shock: Van Allen Probes observations in the magnetotail
Abstract We present in situ observations of a shock-induced substorm-like event on 13 April 2013 observed by the newly launched Van Allen twin probes. Substorm-like electron injections with energy of 30-500 keV were observed in the region from L∼5.2 to 5.5 immediately after the shock arrival (followed by energetic electron drift echoes). Meanwhile, the electron flux was clearly and strongly varying on the ULF wave time scale. It is found that both toroidal and poloidal mode ULF waves with a period of 150 s emerged following the magnetotail magnetic field reconfiguration after the interplanetary (IP) shock passage. The poloidal mode is more intense than the toroidal mode. The 90 phase shift between the poloidal mode Br and Ea suggests the standing poloidal waves in the Northern Hemisphere. Furthermore, the energetic electron flux modulations indicate that the azimuthal wave number is ∼14. Direct evidence of drift resonance between the injected electrons and the excited poloidal ULF wave has been obtained. The resonant energy is estimated to be between 150 keV and 230 keV. Two possible scenaria on ULF wave triggering are discussed: vortex-like flow structure-driven field line resonance and ULF wave growth through drift resonance. It is found that the IP shock may trigger intense ULF wave and energetic electron behavior at L∼3 to 6 on the nightside, while the time profile of the wave is different from dayside cases
Three-dimensional magnetic flux rope structure formed by multiple sequential X-line reconnection at the magnetopause
On 14 June 2007, four Time History of Events and Macroscale Interactions during Substorms spacecraft observed a flux transfer event (FTE) on the dayside magnetopause, which has been previously proved to be generated by multiple, sequential X-line reconnection (MSXR) in a 2-D context. This paper reports a further study of the MSXR event to show the 3-D viewpoint based on additional measurements. The 3-D structure of the FTE flux rope across the magnetospheric boundary is obtained on the basis of multipoint measurements taken on both sides of the magnetopause. The flux rope's azimuthally extended section is found to lie approximately on the magnetopause surface and parallel to the X-line direction; while the axis of the magnetospheric branch is essentially along the local unperturbed magnetospheric field lines. In the central region of the flux rope, as distinct from the traditional viewpoint, we find from the electron distributions that two types of magnetic field topology coexist: opened magnetic field lines connecting the magnetosphere and the magnetosheath and closed field lines connecting the Southern and Northern hemispheres. We confirm, therefore, for the first time, the characteristic feature of the 3-D reconnected magnetic flux rope, formed through MSXR, through a determination of the field topology and the plasma distributions within the flux rope. Knowledge of the complex geometry of FTE flux ropes will improve our understanding of solar wind-magnetosphere interaction.Astronomy & AstrophysicsSCI(E)5ARTICLE51904-191111
Energetic ion injection and formation of the storm-time symmetric ring current
An extensive study of ring current injection and intensification of the storm-time ring current is conducted with three-dimensional (3-D) test particle trajectory calculations (TPTCs). The TPTCs reveal more accurately the process of ring current injection, with the main results being the following: (1) an intense convection electric field can effectively energize and inject plasma sheet particles into the ring current region within 1–3 h. (2) Injected ions often follow chaotic trajectories in non-adiabatic regions, which may have implications in storm and ring current physics. (3) The shielding electric field, which arises as a consequence of enhanced convection and co-exists with the injection and convection electric field, may cause the original open trajectories of injected ions with higher energy to change into closed ones, thus playing a role in the formation of the symmetric ring current
Quantum double of Heisenberg-Weyl algebra, its universal R-matrix and their representations
In this paper a new quasi-triangular Hopf algebra as the quantum double of
the Heisenberg-Weyl algebra is presented.Its universal R-matrix is built and
the corresponding representation theory are studied with the explict
construction for the representations of this quantum double. \newpageComment: 12 page
Recovery of Stem Cell Proliferation by Low Intensity Vibration Under Simulated Microgravity Requires LINC Complex
Mesenchymal stem cells (MSC) rely on their ability to integrate physical and spatial signals at load bearing sites to replace and renew musculoskeletal tissues. Designed to mimic unloading experienced during spaceflight, preclinical unloading and simulated microgravity models show that alteration of gravitational loading limits proliferative activity of stem cells. Emerging evidence indicates that this loss of proliferation may be linked to loss of cellular cytoskeleton and contractility. Low intensity vibration (LIV) is an exercise mimetic that promotes proliferation and differentiation of MSCs by enhancing cell structure. Here, we asked whether application of LIV could restore the reduced proliferative capacity seen in MSCs that are subjected to simulated microgravity. We found that simulated microgravity (sMG) decreased cell proliferation and simultaneously compromised cell structure. These changes included increased nuclear height, disorganized apical F-actin structure, reduced expression, and protein levels of nuclear lamina elements LaminA/C LaminB1 as well as linker of nucleoskeleton and cytoskeleton (LINC) complex elements Sun-2 and Nesprin-2. Application of LIV restored cell proliferation and nuclear proteins LaminA/C and Sun-2. An intact LINC function was required for LIV effect; disabling LINC functionality via co-depletion of Sun-1, and Sun-2 prevented rescue of cell proliferation by LIV. Our findings show that sMG alters nuclear structure and leads to decreased cell proliferation, but does not diminish LINC complex mediated mechanosensitivity, suggesting LIV as a potential candidate to combat sMG-induced proliferation loss
The cusp: a window for particle exchange between the radiation belt and the solar wind
International audienceThe study focuses on a single particle dynamics in the cusp region. The topology of the cusp region in terms of magnetic field iso-B contours has been studied using the Tsyganenko 96 model (T96) as an example, to show the importance of an off-equatorial minimum on particle trapping. We carry out test particle simulations to demonstrate the bounce and drift motion. The "cusp trapping limit" concept is introduced to reflect the particle motion in the high latitude magnetospheric region. The spatial distribution of the "cusp trapping limit" shows that only those particles with near 90° pitch-angles can be trapped and drift around the cusp. Those with smaller pitch angles may be partly trapped in the iso-B contours, however, they will eventually escape along one of the magnetic field lines. There exist both open field lines and closed ones within the same drift orbit, indicating two possible destinations of these particles: those particles being lost along open field lines will be connected to the surface of the magnetopause and the solar wind, while those along closed ones will enter the equatorial radiation belt. Thus, it is believed that the cusp region can provide a window for particle exchange between these two regions. Some of the factors, such as dipole tilt angle, magnetospheric convection, IMF and the Birkeland current system, may influence the cusp's trapping capability and therefore affect the particle exchanging mechanism. Their roles are examined by both the analysis of cusp magnetic topology and test particle simulations
- …