3,965 research outputs found

    Investigating the role of the Melanocortin-1 Receptor gene in an extreme case of microgeographical variation in the pattern of melanin-based plumage pigmentation

    Get PDF
    Received: August 23, 2012; Accepted: October 26, 2012; Published: December 5, 2012The RĂ©union grey white-eye (Zosterops borbonicus) is a single-island endemic passerine bird that exhibits striking geographically structured melanic polymorphism at a very small spatial scale. We investigated the genetic basis of this color polymorphism by testing whether the melanocortin-1 receptor (MC1R), a gene often involved in natural melanic polymorphism in birds, was associated with the observed plumage variation. Although we found three non-synonymous mutations, we detected no association between MC1R variants and color morphs, and the main amino-acid variant found in the RĂ©union grey white-eye was also present at high frequency in the Mauritius grey white-eye (Zosterops mauritianus), its sister species which shows no melanic polymorphism. In addition, neutrality tests and analysis of population structure did not reveal any obvious pattern of positive or balancing selection acting on MC1R. Altogether these results indicate that MC1R does not play a role in explaining the melanic variation observed in the RĂ©union grey white-eye. We propose that other genes such as POMC, Agouti or any other genes involved in pigment synthesis will need to be investigated in future studies if we are to understand how selection shapes complex patterns of melanin-based plumage pigmentation.Peer reviewe

    Ultra high temperature ceramic composite materials

    Get PDF
    Ultra-high temperature ceramics (UHTCs) are materials that have been demonstrated to withstand temperatures up to around 3000°C, thermal fluxes of ~17 MWm-2 and gas velocities of around Mach 0.6. Thus, they offer potential for use in applications such as leading edges and engine parts for hypervelocity vehicles. Under the Domain 8 of the MCM-ITP (Materials and Components for Missiles – Innovation and Technology Partnership) programme, research has been carried out investigating UHTC composites consisting of carbon fibre (Cf) preforms impregnated with HfB2 powders. Whilst the initial impregnation route resulted in preforms with high and uniform powder loadings, this was not true for large samples. As a result, the mechanical properties showed a high degree of scatter. Nevertheless, samples with higher final densities showed higher strengths. Thus a new impregnation route has been developed that results in both higher and more homogeneous powder loading. This has led to higher strengths and even greater temperature and ablation resistance with the only penalty being an increase in component mass. A prototype jet vane has been successfully produced

    Holomorphic anomaly and matrix models

    Get PDF
    The genus g free energies of matrix models can be promoted to modular invariant, non-holomorphic amplitudes which only depend on the geometry of the classical spectral curve. We show that these non-holomorphic amplitudes satisfy the holomorphic anomaly equations of Bershadsky, Cecotti, Ooguri and Vafa. We derive as well holomorphic anomaly equations for the open string sector. These results provide evidence at all genera for the Dijkgraaf--Vafa conjecture relating matrix models to type B topological strings on certain local Calabi--Yau threefolds.Comment: 23 pages, LaTex, 3 figure

    From Microalgae Growth Promotion to the Production of Secondary Metabolites

    Get PDF
    Funding Information: F.Q.-N. and P.R.B. acknowledge receiving a Ph.D. fellowship (2022.10633.BD; 2021.07927.BD514, respectively) funded by FCT/MCTES. Funding Information: This research was conducted in the scope of the project “PhycoµBiome: Understanding and harnessing the power of the microalgae microbiome aiming the maximization of marine microalgae productivity” funded by Fundação para a Ciência e Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior (FCT/MCTES, Portugal), grant number PTDC/BAA-BIO/1262/2020. The research was performed with the support of iNOVA4Health (UIDB/04462/2020 and UIDP/04462/2020) and the Associate Laboratory LS4FUTURE (LA/P/0087/2020) also funded by the FCT/MCTES. Publisher Copyright: © 2023 by the authors.Marine bacteria are a significant source of bioactive compounds for various biotechnological applications. Among these, actinomycetes have been found to produce a wide range of secondary metabolites of interest. Saccharopolyspora is one of the genera of actinomycetes that has been recognized as a potential source of these compounds. This study reports the characterization and genomic analysis of Saccharopolyspora sp. NFXS83, a marine bacterium isolated from seawater from the Sado estuary in Portugal. The NFXS83 strain produced multiple functional and stable extracellular enzymes under high-salt conditions, showed the ability to synthesize auxins such as indole-3-acetic acid, and produced diffusible secondary metabolites capable of inhibiting the growth of Staphylococcus aureus. Furthermore, when Phaeodactylum tricornutum was co-cultivated with strain NFXS83 a significant increase in microalgae cell count, cell size, auto-fluorescence, and fucoxanthin content was observed. Detailed analysis revealed the presence of clusters involved in the production of various secondary metabolites, including extracellular enzymes, antimicrobial compounds, terpenes, and carotenoids in the genome of strain NFXS83. Ultimately, these findings indicate that Saccharopolyspora sp. NFXS83 has a significant potential for a wide range of marine biotechnological applications.publishersversionpublishe

    Role of Grasslands and Grassland Management for Biogeochemical Cycles and Biodiversity. Setting up Long-Term Manipulation Experiments in France

    Get PDF
    Land use for grassland is recognised to have some beneficial effects for biodiversity and the environment: (i) regulation of the water cycle and protection of soils against erosion, (ii) accumulation of organic matter in soil and sequestration of atmospheric C, (iii) regulation of the N cycle and attenuation of the risk for N leaching, (iv) recycling of nutrients and improvement of soil quality, (v) improvement of biodiversity of vegetation, soil microbes and micro- and meso-fauna. All these effects depend upon the management of the grassland: cutting vs. grazing, stocking density, level of N inputs. Management decisions often result from short- term objectives, whereas the soil-vegetation interactions are long-term processes. Therefore, a steady state is usually not reached, which makes it difficult to determine the overall environmental effects of changes in land use and in grassland management

    A random cell motility gradient downstream of FGF controls elongation of amniote embryos

    Get PDF
    Vertebrate embryos are characterized by an elongated antero-posterior (AP) body axis, which forms by progressive cell deposition from a posterior growth zone in the embryo. Here, we used tissue ablation in the chicken embryo to demonstrate that the caudal presomitic mesoderm (PSM) has a key role in axis elongation. Using time-lapse microscopy, we analysed the movements of fluorescently labelled cells in the PSM during embryo elongation, which revealed a clear posterior-to-anterior gradient of cell motility and directionality in the PSM. We tracked the movement of the PSM extracellular matrix in parallel with the labelled cells and subtracted the extracellular matrix movement from the global motion of cells. After subtraction, cell motility remained graded but lacked directionality, indicating that the posterior cell movements associated with axis elongation in the PSM are not intrinsic but reflect tissue deformation. The gradient of cell motion along the PSM parallels the fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK) gradient1, which has been implicated in the control of cell motility in this tissue2. Both FGF signalling gain- and loss-of-function experiments lead to disruption of the motility gradient and a slowing down of axis elongation. Furthermore, embryos treated with cell movement inhibitors (blebbistatin or RhoK inhibitor), but not cell cycle inhibitors, show a slower axis elongation rate. We propose that the gradient of random cell motility downstream of FGF signalling in the PSM controls posterior elongation in the amniote embryo. Our data indicate that tissue elongation is an emergent property that arises from the collective regulation of graded, random cell motion rather than by the regulation of directionality of individual cellular movements
    • …
    corecore