19,862 research outputs found
Temperature dependence of exciton recombination in semiconducting single-wall carbon nanotubes
We study the excitonic recombination dynamics in an ensemble of (9,4)
semiconducting single-wall carbon nanotubes by high sensitivity time-resolved
photo-luminescence experiments. Measurements from cryogenic to room temperature
allow us to identify two main contributions to the recombination dynamics. The
initial fast decay is temperature independent and is attributed to the presence
of small residual bundles that create external non-radiative relaxation
channels. The slow component shows a strong temperature dependence and is
dominated by non-radiative processes down to 40 K. We propose a quantitative
phenomenological modeling of the variations of the integrated photoluminescence
intensity over the whole temperature range. We show that the luminescence
properties of carbon nanotubes at room temperature are not affected by the
dark/bright excitonic state coupling
Prospects for near-infrared characterisation of hot Jupiters with VSI
In this paper, we study the feasibility of obtaining near-infrared spectra of
bright extrasolar planets with the 2nd generation VLTI Spectro-Imager
instrument (VSI), which has the required angular resolution to resolve nearby
hot Extrasolar Giant Planets (EGPs) from their host stars. Taking into account
fundamental noises, we simulate closure phase measurements of several
extrasolar systems using four 8-m telescopes at the VLT and a low spectral
resolution (R = 100). Synthetic planetary spectra from T. Barman are used as an
input. Standard chi2-fitting methods are then used to reconstruct planetary
spectra from the simulated data. These simulations show that low-resolution
spectra in the H and K bands can be retrieved with a good fidelity for half a
dozen targets in a reasonable observing time (about 10 hours, spread over a few
nights). Such observations would strongly constrain the planetary temperature
and albedo, the energy redistribution mechanisms, as well as the chemical
composition of their atmospheres. Systematic errors, not included in our
simulations, could be a serious limitation to these performance estimations.
The use of integrated optics is however expected to provide the required
instrumental stability (around 10^-4 on the closure phase) to enable the first
thorough characterisation of extrasolar planetary emission spectra in the
near-infrared.Comment: 10 pages, 8 figures, Proc. SPIE conference 7013 "Optical and Infrared
Interferometry" (Marseille 2008
Investigation of infrared phonon modes in multiferroic single-crystal FeTeOBr
Reflection and transmission as a function of temperature (5--300 K) have been
measured on single crystals of the multiferroic compound FeTeOBr
utilizing light spanning the far infrared to the visible portions of the
electromagnetic spectrum. The complex dielectric function and optical
properties were obtained via Kramers-Kronig analysis and by fits to a
Drude-Lortentz model. Analysis of the anisotropic excitation spectra via
Drude-Lorentz fitting and lattice dynamical calculations have lead to the
observation of all 52 IR-active modes predicted in the plane and 43 or the
53 modes predicted along the b axis of the monoclinic cell. Assignments to
groups (clusters) of phonons have been made and trends within them are
discussed in light of our calculated displacement patterns.Comment: 9 pages, 7 figure
Effectiveness of delayed-release dimethyl fumarate on patient-reported outcomes and clinical measures in patients with relapsing-remitting multiple sclerosis in a real-world clinical setting: PROTEC.
Ensaio clínico PROTEC, Protocolo nº 109MS408Abstract
BACKGROUND:
Patient-reported outcomes (PRO) and clinical outcomes give a broad assessment of relapsing-remitting multiple sclerosis (RRMS) disease.
OBJECTIVE:
The aim is to evaluate the effectiveness of delayed-release dimethyl fumarate (DMF) on disease activity and PROs in patients with RRMS in the clinic.
METHODS:
PROTEC, a phase 4, open-label, 12-month observational study, assessed annualized relapse rate (ARR), proportion of patients relapsed, and changes in PROs. Newly diagnosed and early MS (≤3.5 EDSS and ≤1 relapse in the prior year) patient subgroups were evaluated.
RESULTS:
Unadjusted ARR at 12 months post-DMF versus 12 months before DMF initiation was 75% lower (0.161 vs. 0.643, p < 0.0001) overall (n = 1105) and 84%, 77%, and 71% lower in newly diagnosed, ≤3.5 EDSS, and ≤1 relapse subgroups, respectively. Overall, 88% of patients were relapse-free 12 months after DMF initiation (84%, newly diagnosed; 88%, ≤3.5 EDSS; 88%, ≤1 relapse). PRO measures for fatigue, treatment satisfaction, daily living, and work improved significantly over 12 months of DMF versus baseline.
CONCLUSION:
At 12 months after versus 12 months before DMF initiation, ARR was significantly lower, the majority of patients were relapse-free, and multiple PRO measures showed improvement (overall and for subgroups), suggesting that DMF is effective based on clinical outcomes and from a patient perspective.Clinical trial: A Study Evaluating the Effectiveness of Tecfidera (Dimethyl Fumarate) on Multiple Sclerosis (MS) Disease Activity and Patient-Reported Outcomes (PROTEC), NCT01930708,info:eu-repo/semantics/publishedVersio
Dissipationless Anomalous Hall Current in Films
The observation of dissipationless anomalous Hall current is one of the
experimental evidences to confirm the intrinsic origin of anomalous Hall
effect. To study the origin of anomalous Hall effect in iron,
Fe(SiO) granular films with volume fraction of SiO
0\le x \le 40.51 were fabricated using co-sputtering. Hall and longitudinal
resistivities were measured in the temperature range 5 to 350 K with magnetic
fields up to 5 Tesla. As x increased from 0 to 40.51, the anomalous Hall
resistivity and longitudinal resistivity increased about 4 and 3 orders in
magnitude, respectively. Analysis of the results revealed that the normalized
anomalous Hall conductivity is a constant for all the samples, the evidence of
dissipationless anomalous Hall current in Fe.Comment: 17 pages, 5 figures;
http://link.aps.org/doi/10.1103/PhysRevB.83.20531
Recommended from our members
Fine-Scale Variations in Eucritic Pyroxene FeO/MnO: Process vs. Provenance.
Most asteroidal igneous rocks are eucrite-like basalts and gabbros, composed mostly of ferroan low- and high-Ca pyroxenes and calcic plagioclase, plus smaller amounts of silica (most commonly tridymite), ilmenite, chromite, troilite, Ca-phosphate, metal and sometimes ferroan olivine. Eucrite-like mafic rocks are fragments of the crusts of differentiated asteroids, and most are likely from 4 Vesta
Stationary phase slip state in quasi-one-dimensional rings
The nonuniform superconducting state in a ring in which the order parameter
vanishing at one point is studied. This state is characterized by a jump of the
phase by at the point where the order parameter becomes zero. In uniform
rings such a state is a saddle-point state and consequently unstable. However,
for non-uniform rings with e.g. variations of geometrical or physical
parameters or with attached wires this state can be stabilized and may be
realized experimentally.Comment: 6 pages, 7 figures, RevTex 4.0 styl
A New Constraint on the Escape Fraction in Distant Galaxies Using Gamma-ray Burst Afterglow Spectroscopy
We describe a new method to measure the escape fraction fesc of ionizing
radiation from distant star-forming galaxies using the afterglow spectra of
long-duration gamma-ray bursts (GRBs). Optical spectra of GRB afterglows allow
us to evaluate the optical depth of the host ISM, according to the neutral
hydrogen column density N(HI) observed along the sightlines toward the
star-forming regions where the GRBs are found. Different from previous effort
in searching for faint, transmitted Lyman continuum photons, our method is not
subject to background subtraction uncertainties and does not require prior
knowledge of either the spectral shape of the host galaxy population or the IGM
Lya forest absorption along these GRB sightlines. Because most GRBs occur in
sub-L_* galaxies, our study also offers the first constraint on fesc for
distant low-mass galaxies that dominate the cosmic luminosity density. We have
compiled a sample of 27 GRBs at redshift z>2 for which the underlying N(HI) in
the host ISM are known. These GRBs together offer a statistical sampling of the
integrated optical depth to ionizing photons along random sightlines from
star-forming regions in the host galaxies, and allow us to estimate the mean
escape fraction averaged over different viewing angles. We find
=0.02\pm 0.02 and place a 95% c.l. upper limit <= 0.075 for these
hosts. We discuss possible biases of our approach and implications of the
result. Finally, we propose to extend this technique for measuring at
z~0.2 using spectra of core-collapse supernovae.Comment: Five journal pages, including one figure; ApJL in pres
- …