1,535 research outputs found

    QuantiDOPA: A Quantification Software for Dopaminergic Neurotransmission SPECT

    Get PDF
    Quantification of neurotransmission Single-Photon Emission Computed Tomography (SPECT) studies of the dopaminergic system can be used to track, stage and facilitate early diagnosis of the disease. The aim of this study was to implement QuantiDOPA, a semi-automatic quantification software of application in clinical routine to reconstruct and quantify neurotransmission SPECT studies using radioligands which bind the dopamine transporter (DAT). To this end, a workflow oriented framework for the biomedical imaging (GIMIAS) was employed. QuantiDOPA allows the user to perform a semiautomatic quantification of striatal uptake by following three stages: reconstruction, normalization and quantification. QuantiDOPA is a useful tool for semi-automatic quantification inDAT SPECT imaging and it has revealed simple and flexibl

    Surface Screening Charge and Effective Charge

    Full text link
    The charge on an atom at a metallic surface in an electric field is defined as the field-derivative of the force on the atom, and this is consistent with definitions of effective charge and screening charge. This charge can be found from the shift in the potential outside the surface when the atoms are moved. This is used to study forces and screening on surface atoms of Ag(001) c(2×2)(2\times 2) -- Xe as a function of external field. It is found that at low positive (outward) fields, the Xe with a negative effective charge of -0.093 ∣e∣|{e}| is pushed into the surface. At a field of 2.3 V \AA−1^{-1} the charge changes sign, and for fields greater than 4.1 V \AA−1^{-1} the Xe experiences an outward force. Field desorption and the Eigler switch are discussed in terms of these results.Comment: 4 pages, 1 figure, RevTex (accepted by PRL

    Automated processing of zebrafish imaging data: a survey

    Get PDF
    Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines

    Evidence for phase formation in potassium intercalated 1,2;8,9-dibenzopentacene

    Full text link
    We have prepared potassium intercalated 1,2;8,9-dibenzopentacene films under vacuum conditions. The evolution of the electronic excitation spectra upon potassium addition as measured using electron energy-loss spectroscopy clearly indicate the formation of particular doped phases with compositions Kx_xdibenzopentacene (xx = 1,2,3). Moreover, the stability of these phases as a function of temperature has been explored. Finally, the electronic excitation spectra also give insight into the electronic ground state of the potassium doped 1,2;8,9-dibenzopentacene films.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:1201.200

    The Three Hundred Project: the gizmo-simba run

    Get PDF
    We introduce gizmo-simba, a new suite of galaxy cluster simulations within The Three Hundred project. The Three Hundred consists of zoom re-simulations of 324 clusters with M 200≳ 1014.8, M ⊙ drawn from the MultiDark-Planck N-body simulation, run using several hydrodynamic and semi-analytical codes. The gizmo-simba suite adds a state-of-the-art galaxy formation model based on the highly successful Simba simulation, mildly re-calibrated to match z = 0 cluster stellar properties. Comparing to The Three Hundred zooms run with gadget-x, we find intrinsic differences in the evolution of the stellar and gas mass fractions, BCG ages, and galaxy colour-magnitude diagrams, with gizmo-simba generally providing a good match to available data at z ≈ 0. gizmo-simba's unique black hole growth and feedback model yields agreement with the observed BH scaling relations at the intermediate-mass range and predicts a slightly different slope at high masses where few observations currently lie. Gizmo-Simba provides a new and novel platform to elucidate the co-evolution of galaxies, gas, and black holes within the densest cosmic environments

    Superconductivity above 30 K in alkali-metal-doped hydrocarbon

    Get PDF
    The recent discovery of superconductivity with a transition temperature (Tc) at 18 K in Kxpicene has extended the possibility of high-Tc superconductors in organic materials. Previous experience based on similar hydrocarbons, like alkali-metal doped phenanthrene, suggested that even higher transition temperatures might be achieved in alkali-metals or alkali-earth-metals doped such polycyclic-aromatic-hydrocarbons (PAHs), a large family of molecules composed of fused benzene rings. Here we report the discovery of high-Tc superconductivity at 33 K in K-doped 1,2:8,9-dibenzopentacene (C30H18). To our best knowledge, it is higher than any Tc reported previously for an organic superconductor under ambient pressure. This finding provides an indication that superconductivity at much higher temperature may be possible in such PAHs system and is worthy of further exploration

    IceCube - the next generation neutrino telescope at the South Pole

    Get PDF
    IceCube is a large neutrino telescope of the next generation to be constructed in the Antarctic Ice Sheet near the South Pole. We present the conceptual design and the sensitivity of the IceCube detector to predicted fluxes of neutrinos, both atmospheric and extra-terrestrial. A complete simulation of the detector design has been used to study the detector's capability to search for neutrinos from sources such as active galaxies, and gamma-ray bursts.Comment: 8 pages, to be published with the proceedings of the XXth International Conference on Neutrino Physics and Astrophysics, Munich 200

    Phosphatase of Regenerating Liver-3 Localizes to Cyto-Membrane and Is Required for B16F1 Melanoma Cell Metastasis In Vitro and In Vivo

    Get PDF
    BACKGROUND: Phosphatase of regenerating liver-3 (PRL-3) is a member of the novel phosphatases of regenerating liver family, characterized by one protein tyrosine phosphatase active domain and a C-terminal prenylation (CCVM) motif. Though widely proposed to facilitate metastasis in many cancer types, PRL-3's cellular localization and the function of its CCVM motif in metastatic process remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, a series of Myc tagged PRL-3 wild type or mutant plasmids were expressed in B16F1 melanoma cells to investigate the relationship between PRL-3's cellular localization and metastasis. With immuno-fluorescence microcopy and cell adhesion/migration assay in vitro, and an experimental passive metastasis model in vivo, we found that CCVM motif is critical for the localization of PRL-3 on cell plasma membrane and the lung metastasis of melanoma. In particular, Cystine170 is the key site for prenylation in this process. CONCLUSIONS/SIGNIFICANCE: These results suggest that cellular localization of PRL-3 is highly correlated with its function in tumor metastasis, and inhibition of PRL-3 prenylation might be a new approach to cancer therapy

    Results from the Antarctic Muon and Neutrino Detector Array (AMANDA)

    Full text link
    We show new results from both the older and newer incarnations of AMANDA (AMANDA-B10 and AMANDA-II, respectively). These results demonstrate that AMANDA is a functioning, multipurpose detector with significant physics and astrophysics reach. They include a new higher-statistics measurement of the atmospheric muon neutrino flux and preliminary results from searches for a variety of sources of ultrahigh energy neutrinos: generic point sources, gamma-ray bursters and diffuse sources producing muons in the detector, and diffuse sources producing electromagnetic or hadronic showers in or near the detector.Comment: Invited talk at the XXth International Conference on Neutrino Physics and Astrophysics (Neutrino 2002), Munich, Germany, May 25-30, 200
    • 

    corecore