22 research outputs found

    Yap and Taz play a crucial role in neural crest-derived craniofacial development

    Get PDF
    The role of the Hippo signaling pathway in cranial neural crest (CNC) development is poorly understood. We used the Wnt1(Cre) and Wnt1(Cre2SOR) drivers to conditionally ablate both Yap and Taz in the CNC of mice. When using either Cre driver, Yap and Taz deficiency in the CNC resulted in enlarged, hemorrhaging branchial arch blood vessels and hydrocephalus. However, Wnt1(Cre2SOR) mutants had an open cranial neural tube phenotype that was not evident in Wnt1(Cre) mutants. In O9-1 CNC cells, the loss of Yap impaired smooth muscle cell differentiation. RNA-sequencing data indicated that Yap and Taz regulate genes encoding Fox transcription factors, specifically Foxc1. Proliferation was reduced in the branchial arch mesenchyme of Yap and Taz CNC conditional knockout (CKO) embryos. Moreover, Yap and Taz CKO embryos had cerebellar aplasia similar to Dandy-Walker spectrum malformations observed in human patients and mouse embryos with mutations in Foxc1. In embryos and O9-1 cells deficient for Yap and Taz, Foxc1 expression was significantly reduced. Analysis of Foxc1 regulatory regions revealed a conserved recognition element for the Yap and Taz DNA binding co-factor Tead. ChIP-PCR experiments supported the conclusion that Foxc1 is directly regulated by the Yap-Tead complex. Our findings uncover important roles for Yap and Taz in CNC diversification and development

    Early patterning and specification of cardiac progenitors in gastrulating mesoderm.

    No full text
    Mammalian heart development requires precise allocation of cardiac progenitors. The existence of a multipotent progenitor for all anatomic and cellular components of the heart has been predicted but its identity and contribution to the two cardiac progenitor 'fields' has remained undefined. Here we show, using clonal genetic fate mapping, that Mesp1+ cells in gastrulating mesoderm are rapidly specified into committed cardiac precursors fated for distinct anatomic regions of the heart. We identify Smarcd3 as a marker of early specified cardiac precursors and identify within these precursors a compartment boundary at the future junction of the left and right ventricles that arises prior to morphogenesis. Our studies define the timing and hierarchy of cardiac progenitor specification and demonstrate that the cellular and anatomical fate of mesoderm-derived cardiac cells is specified very early. These findings will be important to understand the basis of congenital heart defects and to derive cardiac regeneration strategies

    FishNET: An automated relational database for zebrafish colony management.

    No full text
    The zebrafish Danio rerio is a powerful model system to study the genetics of development and disease. However, maintenance of zebrafish husbandry records is both time intensive and laborious, and a standardized way to manage and track the large amount of unique lines in a given laboratory or centralized facility has not been embraced by the field. Here, we present FishNET, an intuitive, open-source, relational database for managing data and information related to zebrafish husbandry and maintenance. By creating a "virtual facility," FishNET enables users to remotely inspect the rooms, racks, tanks, and lines within a given facility. Importantly, FishNET scales from one laboratory to an entire facility with several laboratories to multiple facilities, generating a cohesive laboratory and community-based platform. Automated data entry eliminates confusion regarding line nomenclature and streamlines maintenance of individual lines, while flexible query forms allow researchers to retrieve database records based on user-defined criteria. FishNET also links associated embryonic and adult biological samples with data, such as genotyping results or confocal images, to enable robust and efficient colony management and storage of laboratory information. A shared calendar function with email notifications and automated reminders for line turnover, automated tank counts, and census reports promote communication with both end users and administrators. The expected benefits of FishNET are improved vivaria efficiency, increased quality control for experimental numbers, and flexible data reporting and retrieval. FishNET's easy, intuitive record management and open-source, end-user-modifiable architecture provides an efficient solution to real-time zebrafish colony management for users throughout a facility and institution and, in some cases, across entire research hubs

    The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations

    No full text
    Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain

    A novel reporter allele for monitoring Dll4 expression within the embryonic and adult mouse

    No full text
    Canonical Notch signaling requires the presence of a membrane bound ligand and a corresponding transmembrane Notch receptor. Receptor engagement induces multiple proteolytic cleavage events culminating in the nuclear accumulation of the Notch intracellular domain and its binding to a transcriptional co-factor to mediate gene expression. Notch signaling networks are essential regulators of vascular patterning and angiogenesis, as well as myriad other biological processes. Delta-like 4 (Dll4) encodes the earliest Notch ligand detected in arterial cells, and is enriched in sprouting endothelial tip cells. Dll4 expression has often been inferred by proxy using a lacZ knockin reporter allele. This is problematic, as a single copy of Dll4 is haploinsufficient. Additionally, Notch activity regulates Dll4 transcription, making it unclear whether these reporter lines accurately reflect Dll4 expression. Accordingly, precisely defining Dll4 expression is essential for determining its role in development and disease. To address these limitations, we generated a novel BAC transgenic allele with a nuclear-localized β-galactosidase reporter (Dll4-BAC-nlacZ). Through a comparative analysis, we show the BAC line overcomes previous issues of haploinsufficiency, it recapitulates Dll4 expression in vivo, and allows superior visualization and imaging. As such, this novel Dll4 reporter is an important addition to the growing Notch toolkit
    corecore