53 research outputs found

    Dwa systemy dobra? Fenomen sprawnoƛci

    Get PDF
    In this article two systems of understanding of good are presented: first, the philosophical one (connected with ethical system), and second – religious one (espe cially in case of Christianity, but also other monotheistic religions). It is possible, of course, to imagine a “mixed” system or one where those two could meet each other in specific point, or concept, or representation. In general, those systems have to be considered separately. Rational explanation is crucial for a philosophical system (achieving a specific good makes a reinterpretation of ethical situation from different point of view, for example as a sacrifice, impossible), while religious system needs a personal explanation (ethical situation could have a far-reaching consequences for interpersonal relations, because a supernatural factor, for example a grace, is included here)

    Dziecko przed lustrem, czyli w poszukiwaniu swojego miejsca

    Get PDF
    The article is the cultural studies view on a child’s developmental difficulties in the modern world. I illustrate the theories of Lacan (the mirror stage) and Vygotsky (which describes the development as a complex functional relationship between speech, tool using and field of vision) with the 2006 movie Little Miss Sunshine directed by Jonathan Dayton and Valerie Faris. The movie is an attempt to show relationships in a family where each member is faced with a different kind of crisis. I refer also to Ariùs’s The history of childhood to show that „childhood” is still a cultural matter

    Campylobacter jejuni dsb gene expression is regulated by iron in a Fur-dependent manner and by a translational coupling mechanism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many bacterial extracytoplasmic proteins are stabilized by intramolecular disulfide bridges that are formed post-translationally between their cysteine residues. This protein modification plays an important role in bacterial pathogenesis, and is facilitated by the Dsb (disulfide bond) family of the redox proteins. These proteins function in two parallel pathways in the periplasmic space: an oxidation pathway and an isomerization pathway. The Dsb oxidative pathway in <it>Campylobacter jejuni </it>is more complex than the one in the laboratory <it>E. coli </it>K-12 strain.</p> <p>Results</p> <p>In the <it>C. jejuni </it>81-176 genome, the <it>dsb </it>genes of the oxidative pathway are arranged in three transcriptional units: <it>dsbA2</it>-<it>dsbB</it>-<it>astA, dsbA1 </it>and <it>dba</it>-<it>dsbI</it>. Their transcription responds to an environmental stimulus - iron availability - and is regulated in a Fur-dependent manner. Fur involvement in <it>dsb </it>gene regulation was proven by a reporter gene study in a <it>C. jejuni </it>wild type strain and its isogenic <it>fur </it>mutant. An electrophoretic mobility shift assay (EMSA) confirmed that analyzed genes are members of the Fur regulon but each of them is regulated by a disparate mechanism, and both the iron-free and the iron-complexed Fur are able to bind <it>in vitro </it>to the <it>C. jejuni </it>promoter regions. This study led to identification of a new iron- and Fur-regulated promoter that drives <it>dsbA1 </it>gene expression in an indirect way. Moreover, the present work documents that synthesis of DsbI oxidoreductase is controlled by the mechanism of translational coupling. The importance of a secondary <it>dba-dsbI </it>mRNA structure for <it>dsbI </it>mRNA translation was verified by estimating individual <it>dsbI </it>gene expression from its own promoter.</p> <p>Conclusions</p> <p>The present work shows that iron concentration is a significant factor in <it>dsb </it>gene transcription. These results support the concept that iron concentration - also through its influence on <it>dsb </it>gene expression - might control the abundance of extracytoplasmic proteins during different stages of infection. Our work further shows that synthesis of the DsbI membrane oxidoreductase is controlled by a translational coupling mechanism. The <it>dba </it>expression is not only essential for the translation of the downstream <it>dsbI </it>gene, but also Dba protein that is produced might regulate the activity and/or stability of DsbI.</p

    Cell Wall Anchoring of the Campylobacter Antigens to Lactococcus lactis

    Get PDF
    Campylobacter jejuni is the most frequent cause of human food-borne gastroenteritis and chicken meat is the main source of infection. Recent studies showed that broiler chicken immunization against Campylobacter should be the most efficient way to lower the number of human infections by this pathogen. Induction of the mucosal immune system after oral antigen administration should provide protective immunity to chickens. In this work we tested the usefulness of Lactococcus lactis, the most extensively studied lactic acid bacterium, as a delivery vector for Campylobacter antigens. First we constructed hybrid protein – CjaA antigen presenting CjaD peptide epitopes on its surface. We showed that specific rabbit anti-rCjaAD serum reacted strongly with both CjaA and CjaD produced by a wild type Campylobacter jejuni strain. Next, rCjaAD and CjaA were fused to the C-terminus of the L. lactis YndF containing the LPTXG motif. The genes expressing these proteins were transcribed under control of the L. lactis Usp45 promoter and their products contain the Usp45 signal sequences. This strategy ensures a cell surface location of both analysed proteins, which was confirmed by immunofluorescence assay. In order to evaluate the impact of antigen location on vaccine prototype efficacy, a L. lactis strain producing cytoplasm-located rCjaAD was also generated. Animal experiments showed a decrease of Campylobacter cecal load in vaccinated birds as compared with the control group and showed that the L. lactis harboring the surface-exposed rCjaAD antigen afforded greater protection than the L. lactis producing cytoplasm-located rCjaAD. To the best of our knowledge, this is the first attempt to employ LAB (Lactic Acid Bacteria) strains as a mucosal delivery vehicle for chicken immunization. Although the observed reduction of chicken colonization by Campylobacter resulting from vaccination was rather moderate, the experiments showed that LAB strains can be considered as an alternative vector to deliver heterologous antigens to the bird immune system. Additionally, the analysis of the structure and immunogenicity of the generated rCjaAD hybrid protein showed that the CjaA antigen can be considered as a starting point to construct multiepitope anti-Campylobacter vaccines
    • 

    corecore