22 research outputs found

    Companion Animals in Zoonoses Research – Ethical Considerations

    Get PDF
    Non-human animals are commonly classified according to their "role", such as "livestock", "wild" or "companion" animals. But what if those classifications overlap? This article presents a report of the retreat week "ZooCan – Zoonoses of companion animals as case study for animal ethics" at the University of Veterinary Medicine Hannover, Germany, in November 2022. The workshop included participants from different European countries with interdisciplinary backgrounds (animal law, bioethics, epidemiology, philosophy, biology and veterinary medicine). We address ethically relevant issues that emerge when companion animals are used as research animals, particularly in zoonoses research. The outcomes of the multi-disciplinary approach are used to i) define criteria to classify "companion" and "research" animals, ii) provide guidance to overcome the challenges with classificational overlaps, iii) give insights into cutting-edge zoonoses research with an example of SARS-CoV-2 in cats, and iv) discuss animal ethics approaches with regard to classifications

    Module M1 of Zebrafish Neuroglobin Acts as a Structural and Functional Protein Building Block for a Cell-Membrane-Penetrating Activity

    Get PDF
    Neuroglobin (Ngb) is a recently discovered vertebrate globin that is expressed in the brain and can reversibly bind oxygen. Mammalian Ngb is involved in neuroprotection during oxidative stress that occurs, for example, during ischemia and reperfusion. Recently, we found that zebrafish, but not human, Ngb can translocate into cells. Moreover, we demonstrated that a chimeric ZHHH Ngb protein, in which the module M1 of human Ngb is replaced by the corresponding region of zebrafish Ngb, can penetrate cell membranes and protect cells against oxidative stress-induced cell death, suggesting that module M1 of zebrafish Ngb is important for protein transduction. Furthermore, we recently showed that Lys7, Lys9, Lys21, and Lys23 in module M1 of zebrafish Ngb are crucial for protein transduction activity. In the present study, we have investigated whether module M1 of zebrafish Ngb can be used as a building block to create novel cell-membrane-penetrating folded proteins. First, we engineered a chimeric myoglobin (Mb), in which module M1 of zebrafish Ngb was fused to the N-terminus of full-length human Mb, and investigated its functional and structural properties. Our results showed that this chimeric Mb protein is stable and forms almost the same heme environment and α-helical structure as human wild-type Mb. In addition, we demonstrated that chimeric Mb has a cell-membrane-penetrating activity similar to zebrafish Ngb. Moreover, we found that glycosaminoglycan is crucial for the cell-membrane-penetrating activity of chimeric Mb as well as that of zebrafish Ngb. These results enable us to conclude that such module substitutions will facilitate the design and production of novel functional proteins

    Neuroglobin and cytoglobin in search of their role in the vertebrate globin family

    No full text
    Neuroglobin and cytoglobin are two recent additions to the family of heme-containing respiratory proteins of man and other vertebrates. Here, we review the present state of knowledge of the structures, ligand binding kinetics, evolution and expression patterns of these two proteins. These data provide a first glimpse into the possible physiological roles of these globins in the animal's metabolism. Both, neuroglobin and cytoglobin are structurally similar to myoglobin, although they contain distinct cavities that may be instrumental in ligand binding. Kinetic and structural studies show that neuroglobin and cytoglobin belong to the class of hexa-coordinated globins with a biphasic ligand-binding kinetics. Nevertheless, their oxygen affinities resemble that of myoglobin. While neuroglobin is evolutionarily related to the invertebrate nerve-globins, cytoglobin shares a more recent common ancestry with myoglobin. Neuroglobin expression is confined mainly to brain and a few other tissues, with the highest expression observed in the retina. Present evidence points to an important role of neuroglobin in neuronal oxygen homeostasis and hypoxia protection, though other functions are still conceivable. Cytoglobin is predominantly expressed in fibroblasts and related cell types, but also in distinct nerve cell populations. Much less is known about its function, although in fibroblasts it might be involved in collagen synthesis

    Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax

    No full text
    The subterranean mole rat Spalax is an excellent model for studying adaptation of a mammal toward chronic environmental hypoxia. Neuroglobin (Ngb) and cytoglobin (Cygb) are O2-binding respiratory proteins and thus candidates for being involved in molecular hypoxia adaptations of Spalax. Ngb is expressed primarily in vertebrate nerves, whereas Cygb is found in extracellular matrix-producing cells and in some neurons. The physiological functions of both proteins are not fully understood but discussed with regard to O2 supply, the detoxification of reactive oxygen or nitrogen species, and apoptosis protection. Spalax Ngb and Cygb coding sequences are strongly conserved. However, mRNA and protein levels of Ngb in Spalax brain are 3-fold higher than in Rattus norvegicus under normoxia. Importantly, Spalax expresses Ngb in neurons and additionally in glia, whereas in hypoxia-sensitive rodents Ngb expression is limited to neurons. Hypoxia causes an approximately 2-fold down-regulation of Ngb mRNA in brain of rat and mole rat. A parallel regulatory response was found for myoglobin (Mb) in Spalax and rat muscle, suggesting similar functions of Mb and Ngb. Cygb also revealed an augmented normoxic expression in Spalax vs. rat brain, but not in heart or liver, indicating distinct tissue-specific functions. Hypoxia induced Cygb transcription in heart and liver of both mammals, with the most prominent mRNA up-regulation (12-fold) in Spalax heart. Our data suggest that tissue globins contribute to the remarkable tolerance of Spalax toward environmental hypoxia. This is consistent with the proposed cytoprotective effect of Ngb and Cygb under pathological hypoxic/ischemic conditions in mammals
    corecore