13 research outputs found
The Höfðahólarrock avalanche (sturzström): Chronological constraint of paraglacial landsliding on an Icelandic hillslope
International audienc
Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise
The Australian–Indonesian summer monsoon affects rainfall variability and hence terrestrial productivity in the densely populated tropical Indo–Pacific region. It has been proposed that the main control of summer monsoon precipitation on millennial timescales is local insolation, but unravelling the mechanisms that have influenced monsoon variability and teleconnections has proven difficult, owing to the lack of high-resolution records of past monsoon behaviour. Here we present a precisely dated reconstruction of monsoon rainfall over the past 12,000 years, based on oxygen isotope measurements from two stalagmites collected in southeast Indonesia. We show that the summer monsoon precipitation increased during the Younger Dryas cooling event, when Atlantic meridional overturning circulation was relatively weak. Monsoon precipitation intensified even more rapidly from 11,000 to 7,000 years ago, when the Indonesian continental shelf was flooded by global sea-level rise. We suggest that the intensification during the Younger Dryas cooling was caused by enhanced winter monsoon outflow from Asia and a related southward migration of the intertropical convergence zone. However, the early Holocene intensification of monsoon precipitation was driven by sea-level rise, which increased the supply of moisture to the Indonesian archipelago
Evolutionary and natural history of the turtle frog, Myobatrachus gouldii, a bizarre myobatrachid frog in the southwestern Australian biodiversity hotspot
Southwest Australia (SWA) is a global biodiversity hotspot and a centre of diversity and endemism for the Australo-Papuan myobatrachid frogs. Myobatrachus gouldii (the turtle frog) has a highly derived morphology associated with its forward burrowing behaviour, largely subterranean habit, and unusual mode of reproduction. Its sister genera Metacrinia and Arenophryne have restricted distributions in Western Australia with significant phylogeographic structure, leading to the recent description of a new species in the latter. In contrast, Myobatrachus is distributed widely throughout SWA over multiple climatic zones, but little is known of its population structure, geographic variation in morphology, or reproduction. We generated molecular and morphological data to test for genetic and morphological variation, and to assess whether substrate specialisation in this species may have led to phylogeographic structuring similar to that of other plant and animal taxa in SWA. We assembled sequence data for one mitochondrial and four nuclear DNA loci (3628 base pairs) for 42 turtle frogs sampled throughout their range. Likelihood phylogenetic analyses revealed shallow phylogeographic structure in the mtDNA locus (up to 3.3% genetic distance) and little variation in three of the four nDNA loci. The mtDNA haplotype network suggests five geographically allopatric groups, with no shared haplotypes between regions. These geographic patterns are congruent with several other SWA species, with genetic groups restricted to major hydrological divisions, the Swan Coastal Plain, and the Darling Scarp. The geographically structured genetic groups showed no evidence of significant morphological differentiation (242 individuals), and there was little sexual size dimorphism, but subtle differences in reproductive traits suggest more opportunistic breeding in lower rainfall zones. Call data were compared to sister genera Metacrinia and Arenophryne and found to be highly conservative across the three genera. Like many taxa in SWA, topographic variation and Plio-Pleistocene arid fluctuations likely were historic drivers of diversification in M. gouldii