5,348 research outputs found

    Towards an analytical framework of science communication models

    Get PDF
    This chapter reviews the discussion in science communication circles of models for public communication of science and technology (PCST). It questions the claim that there has been a large-scale shift from a ‘deficit model’ of communication to a ‘dialogue model’, and it demonstrates the survival of the deficit model along with the ambiguities of that model. Similar discussions in related fields of communication, including the critique of dialogue, are briefly sketched. Outlining the complex circumstances governing approaches to PCST, the author argues that communications models often perceived to be opposed can, in fact, coexist when the choices are made explicit. To aid this process, the author proposes an analytical framework of communication models based on deficit, dialogue and participation, including variations on each

    The use of Fe-30% Ni and Fe-30% Ni-Nb alloys as model systems for studying the microstructural evolution during the hot deformation of austenite

    Full text link
    The development of physically-based models of microstructural evolution during thermomechanical processing of metallic materials requires knowledge of the internal state variable data, such as microstructure, texture, and dislocation substructure characteristics, over a range of processing conditions. This is a particular problem for steels, where transformation of the austenite to a variety of transformation products eradicates the hot deformed microstructure. This article reports on a model Fe-30wt% Ni-based alloy, which retains a stable austenitic structure at room temperature, and has, therefore, been used to model the development of austenite microstructure during hot deformation of conventional low carbon-manganese steels. It also provides an excellent model alloy system for microalloy additions. Evolution of the microstructure and crystallographic texture was characterized in detail using optical microscopy, X-ray diffraction (XRD), SEM, EBSD, and TEM. The dislocation substructure has been quantified as a function of crystallographic texture component for a variety of deformation conditions for the Fe-30% Ni-based alloy. An extension to this study, as the use of a microalloyed Fe-30% Ni-Nb alloy in which the strain induced precipitation mechanism was studied directly. The work has shown that precipitation can occur at a much finer scale and higher number density than hitherto considered, but that pipe diffusion leads to rapid coarsening. The implications of this for model development are discussed

    The ‘credibility paradox’ in China’s science communication: Views from scientific practitioners

    Get PDF
    In contrast to increasing debates on China’s rising status as a global scientific power, issues of China’s science communication remain under-explored. Based on 21 in-depth interviews in three cities, this article examines Chinese scientists’ accounts of the entangled web of influence which conditions the process of how scientific knowledge achieves (or fails to achieve) its civic authority. A main finding of this study is a ‘credibility paradox’ as a result of the over-politicisation of science and science communication in China. Respondents report that an absence of visible institutional endorsements renders them more public credibility and better communication outcomes. Thus, instead of exploiting formal channels of science communication, scientists interviewed were more keen to act as ‘informal risk communicators’ in grassroots and private events. Chinese scientists’ perspectives on how to earn public support of their research sheds light on the nature and impact of a ‘civic epistemology’ in an authoritarian state

    The ROTSE-III Robotic Telescope System

    Get PDF
    The observation of a prompt optical flash from GRB990123 convincingly demonstrated the value of autonomous robotic telescope systems. Pursuing a program of rapid follow-up observations of gamma-ray bursts, the Robotic Optical Transient Search Experiment (ROTSE) has developed a next-generation instrument, ROTSE-III, that will continue the search for fast optical transients. The entire system was designed as an economical robotic facility to be installed at remote sites throughout the world. There are seven major system components: optics, optical tube assembly, CCD camera, telescope mount, enclosure, environmental sensing & protection and data acquisition. Each is described in turn in the hope that the techniques developed here will be useful in similar contexts elsewhere.Comment: 19 pages, including 4 figures. To be published in PASP in January, 2003. PASP Number IP02-11

    Determining a Flow Stress Model for High Temperature Deformation of Ti-6Al-4V

    Get PDF
    In some commercial titanium extrusion practices, twisting of the extrudate can occur, which can result in the need to crop the back and front end of the extruded material, thereby reducing yield and increasing material losses. Understanding more about the behaviour of material during the extrusion process, and investigating the cause of defects such as twisting by use of finite element (FE) modelling techniques could help to reduce these losses, improve the productivity of the extrusion process, and the overall quality of the material produced. One of the most important components of FE techniques for hot deformation is the type of flow stress model that is used in the simulations. In this investigation isothermal uniaxial compression testing was performed on cylindrical specimens of Ti-6Al-4V at temperatures ranging from 950 °C to 1200°C and strain rates of 0.1 s-1 to 50 s-1, to produce true stress against true strain and load against die travel curves which were subsequently used to develop a new specific flow stress model for use in hot deformation above the beta transus, which can ultimately be applied to the hot extrusion of Ti-6Al-4V. From analysis of this data it was concluded that flow softening and work hardening do not occur during deformation, and that low friction conditions exist between the material and the tooling. The activation energy for deformation was found to be 193178 J.mol-1, and the flow stress model was shown to give a good fit to the raw data at low strain rates, but this relationship broke down at higher strain rates. Finally the importance of generating a flow stress model specific to a particular operation, and set of experimental data, rather than relying on existing data available in the literature is demonstrated

    Relationship between quantum decoherence times and solvation dynamics in condensed phase chemical systems

    Get PDF
    A relationship between the time scales of quantum coherence loss and short-time solvent response for a solute/bath system is derived for a Gaussian wave packet approximation for the bath. Decoherence and solvent response times are shown to be directly proportional to each other, with the proportionality coefficient given by the ratio of the thermal energy fluctuations to the fluctuations in the system-bath coupling. The relationship allows the prediction of decoherence times for condensed phase chemical systems from well developed experimental methods.Comment: 10 pages, no figures, late

    A scoping review of de-implementation frameworks and models

    Get PDF
    BACKGROUND: Reduction or elimination of inappropriate, ineffective, or potentially harmful healthcare services and public health programs can help to ensure limited resources are used effectively. Frameworks and models (FM) are valuable tools in conceptualizing and guiding the study of de-implementation. This scoping review sought to identify and characterize FM that can be used to study de-implementation as a phenomenon and identify gaps in the literature to inform future model development and application for research. METHODS: We searched nine databases and eleven journals from a broad array of disciplines (e.g., healthcare, public health, public policy) for de-implementation studies published between 1990 and June 2020. Two raters independently screened titles and abstracts, and then a pair of raters screened all full text records. We extracted information related to setting, discipline, study design, methodology, and FM characteristics from included studies. RESULTS: The final search yielded 1860 records, from which we screened 126 full text records. We extracted data from 27 articles containing 27 unique FM. Most FM (n = 21) were applicable to two or more levels of the Socio-Ecological Framework, and most commonly assessed constructs were at the organization level (n = 18). Most FM (n = 18) depicted a linear relationship between constructs, few depicted a more complex structure, such as a nested or cyclical relationship. Thirteen studies applied FM in empirical investigations of de-implementation, while 14 articles were commentary or review papers that included FM. CONCLUSION: De-implementation is a process studied in a broad array of disciplines, yet implementation science has thus far been limited in the integration of learnings from other fields. This review offers an overview of visual representations of FM that implementation researchers and practitioners can use to inform their work. Additional work is needed to test and refine existing FM and to determine the extent to which FM developed in one setting or for a particular topic can be applied to other contexts. Given the extensive availability of FM in implementation science, we suggest researchers build from existing FM rather than recreating novel FM. REGISTRATION: Not registered

    A Pair of Compact Red Galaxies at Redshift 2.38, Immersed in a 100 kpc Scale Ly-alpha Nebula

    Full text link
    We present Hubble Space Telescope (HST) and ground-based observations of a pair of galaxies at redshift 2.38, which are collectively known as 2142-4420 B1 (Francis et al. 1996). The two galaxies are both luminous extremely red objects (EROs), separated by 0.8 arcsec. They are embedded within a 100 kpc scale diffuse Ly-alpha nebula (or blob) of luminosity ~10^44 erg/s. The radial profiles and colors of both red objects are most naturally explained if they are young elliptical galaxies: the most distant yet found. It is not, however, possible to rule out a model in which they are abnormally compact, extremely dusty starbursting disk galaxies. If they are elliptical galaxies, their stellar populations have inferred masses of ~10^11 solar masses and ages of ~7x10^8 years. Both galaxies have color gradients: their centers are significantly bluer than their outer regions. The surface brightness of both galaxies is roughly an order of magnitude greater than would be predicted by the Kormendy relation. A chain of diffuse star formation extending 1 arcsec from the galaxies may be evidence that they are interacting or merging. The Ly-alpha nebula surrounding the galaxies shows apparent velocity substructure of amplitude ~ 700 km/s. We propose that the Ly-alpha emission from this nebula may be produced by fast shocks, powered either by a galactic superwind or by the release of gravitational potential energy.Comment: 33 pages, 9 figures, ApJ in press (to appear in Jun 10 issue
    corecore