372 research outputs found

    Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)

    Get PDF
    The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae

    Scalar-field Pressure in Induced Gravity with Higgs Potential and Dark Matter

    Full text link
    A model of induced gravity with a Higgs potential is investigated in detail in view of the pressure components related to the scalar-field excitations. The physical consequences emerging as an artifact due to the presence of these pressure terms are analysed in terms of the constraints parting from energy density, solar-relativistic effects and galactic dynamics along with the dark matter halos.Comment: 26 pages, 3 figures, Minor revision, Published in JHE

    Visual ecology of aphids – a critical review on the role of colours in host finding

    Get PDF
    We review the rich literature on behavioural responses of aphids (Hemiptera: Aphididae) to stimuli of different colours. Only in one species there are adequate physiological data on spectral sensitivity to explain behaviour crisply in mechanistic terms. Because of the great interest in aphid responses to coloured targets from an evolutionary, ecological and applied perspective, there is a substantial need to expand these studies to more species of aphids, and to quantify spectral properties of stimuli rigorously. We show that aphid responses to colours, at least for some species, are likely based on a specific colour opponency mechanism, with positive input from the green domain of the spectrum and negative input from the blue and/or UV region. We further demonstrate that the usual yellow preference of aphids encountered in field experiments is not a true colour preference but involves additional brightness effects. We discuss the implications for agriculture and sensory ecology, with special respect to the recent debate on autumn leaf colouration. We illustrate that recent evolutionary theories concerning aphid–tree interactions imply far-reaching assumptions on aphid responses to colours that are not likely to hold. Finally we also discuss the implications for developing and optimising strategies of aphid control and monitoring

    A frameshift mutation of the chloroplast matK coding region is associated with chlorophyll deficiency in the Cryptomeria japonica virescent mutant Wogon-Sugi

    Get PDF
    Wogon-Sugi has been reported as a cytoplasmically inherited virescent mutant selected from a horticultural variety of Cryptomeria japonica. Although previous studies of plastid structure and inheritance indicated that at least some mutations are encoded by the chloroplast genome, the causative gene responsible for the primary chlorophyll deficiency in Wogon-Sugi, has not been identified. In this study, we identified this gene by genomic sequencing of chloroplast DNA and genetic analysis. Chloroplast DNA sequencing of 16 wild-type and 16 Wogon-Sugi plants showed a 19-bp insertional sequence in the matK coding region in the Wogon-Sugi. This insertion disrupted the matK reading frame. Although an indel mutation in the ycf1 and ycf2 coding region was detected in Wogon-Sugi, sequence variations similar to that of Wogon-Sugi were also detected in several wild-type lines, and they maintained the reading frame. Genetic analysis of the 19 bp insertional mutation in the matK coding region showed that it was found only in the chlorophyll-deficient sector of 125 full-sibling seedlings. Therefore, the 19-bp insertion in the matK coding region is the most likely candidate at present for a mutation underlying the Wogon-Sugi phenotype

    High-Throughput Sequencing of Three Lemnoideae (Duckweeds) Chloroplast Genomes from Total DNA

    Get PDF
    BACKGROUND: Chloroplast genomes provide a wealth of information for evolutionary and population genetic studies. Chloroplasts play a particularly important role in the adaption for aquatic plants because they float on water and their major surface is exposed continuously to sunlight. The subfamily of Lemnoideae represents such a collection of aquatic species that because of photosynthesis represents one of the fastest growing plant species on earth. METHODS: We sequenced the chloroplast genomes from three different genera of Lemnoideae, Spirodela polyrhiza, Wolffiella lingulata and Wolffia australiana by high-throughput DNA sequencing of genomic DNA using the SOLiD platform. Unfractionated total DNA contains high copies of plastid DNA so that sequences from the nucleus and mitochondria can easily be filtered computationally. Remaining sequence reads were assembled into contiguous sequences (contigs) using SOLiD software tools. Contigs were mapped to a reference genome of Lemna minor and gaps, selected by PCR, were sequenced on the ABI3730xl platform. CONCLUSIONS: This combinatorial approach yielded whole genomic contiguous sequences in a cost-effective manner. Over 1,000-time coverage of chloroplast from total DNA were reached by the SOLiD platform in a single spot on a quadrant slide without purification. Comparative analysis indicated that the chloroplast genome was conserved in gene number and organization with respect to the reference genome of L. minor. However, higher nucleotide substitution, abundant deletions and insertions occurred in non-coding regions of these genomes, indicating a greater genomic dynamics than expected from the comparison of other related species in the Pooideae. Noticeably, there was no transition bias over transversion in Lemnoideae. The data should have immediate applications in evolutionary biology and plant taxonomy with increased resolution and statistical power

    The complete sequences and gene organisation of the mitochondrial genomes of the heterodont bivalves Acanthocardia tuberculata and Hiatella arctica – and the first record for a putative Atpase subunit 8 gene in marine bivalves

    Get PDF
    BACKGROUND: Mitochondrial (mt) gene arrangement is highly variable among molluscs and especially among bivalves. Of the 30 complete molluscan mt-genomes published to date, only one is of a heterodont bivalve, although this is the most diverse taxon in terms of species numbers. We determined the complete sequence of the mitochondrial genomes of Acanthocardia tuberculata and Hiatella arctica, (Mollusca, Bivalvia, Heterodonta) and describe their gene contents and genome organisations to assess the variability of these features among the Bivalvia and their value for phylogenetic inference. RESULTS: The size of the mt-genome in Acanthocardia tuberculata is 16.104 basepairs (bp), and in Hiatella arctica 18.244 bp. The Acanthocardia mt-genome contains 12 of the typical protein coding genes, lacking the Atpase subunit 8 (atp8) gene, as all published marine bivalves. In contrast, a complete atp8 gene is present in Hiatella arctica. In addition, we found a putative truncated atp8 gene when re-annotating the mt-genome of Venerupis philippinarum. Both mt-genomes reported here encode all genes on the same strand and have an additional trnM. In Acanthocardia several large non-coding regions are present. One of these contains 3.5 nearly identical copies of a 167 bp motive. In Hiatella, the 3' end of the NADH dehydrogenase subunit (nad)6 gene is duplicated together with the adjacent non-coding region. The gene arrangement of Hiatella is markedly different from all other known molluscan mt-genomes, that of Acanthocardia shows few identities with the Venerupis philippinarum. Phylogenetic analyses on amino acid and nucleotide levels robustly support the Heterodonta and the sister group relationship of Acanthocardia and Venerupis. Monophyletic Bivalvia are resolved only by a Bayesian inference of the nucleotide data set. In all other analyses the two unionid species, being to only ones with genes located on both strands, do not group with the remaining bivalves. CONCLUSION: The two mt-genomes reported here add to and underline the high variability of gene order and presence of duplications in bivalve and molluscan taxa. Some genomic traits like the loss of the atp8 gene or the encoding of all genes on the same strand are homoplastic among the Bivalvia. These characters, gene order, and the nucleotide sequence data show considerable potential of resolving phylogenetic patterns at lower taxonomic levels

    Identifying microRNA/mRNA dysregulations in ovarian cancer

    Get PDF
    Abstract Background MicroRNAs are a class of noncoding RNA molecules that co-regulate the expression of multiple genes via mRNA transcript degradation or translation inhibition. Since they often target entire pathways, they may be better drug targets than genes or proteins. MicroRNAs are known to be dysregulated in many tumours and associated with aggressive or poor prognosis phenotypes. Since they regulate mRNA in a tissue specific manner, their functional mRNA targets are poorly understood. In previous work, we developed a method to identify direct mRNA targets of microRNA using patient matched microRNA/mRNA expression data using an anti-correlation signature. This method, applied to clear cell Renal Cell Carcinoma (ccRCC), revealed many new regulatory pathways compromised in ccRCC. In the present paper, we apply this method to identify dysregulated microRNA/mRNA mechanisms in ovarian cancer using data from The Cancer Genome Atlas (TCGA). Methods TCGA Microarray data was normalized and samples whose class labels (tumour or normal) were ambiguous with respect to consensus ensemble K-Means clustering were removed. Significantly anti-correlated and correlated genes/microRNA differentially expressed between tumour and normal samples were identified. TargetScan was used to identify gene targets of microRNA. Results We identified novel microRNA/mRNA mechanisms in ovarian cancer. For example, the expression level of RAD51AP1 was found to be strongly anti-correlated with the expression of hsa-miR-140-3p, which was significantly down-regulated in the tumour samples. The anti-correlation signature was present separately in the tumour and normal samples, suggesting a direct causal dysregulation of RAD51AP1 by hsa-miR-140-3p in the ovary. Other pairs of potentially biological relevance include: hsa-miR-145/E2F3, hsa-miR-139-5p/TOP2A, and hsa-miR-133a/GCLC. We also identified sets of positively correlated microRNA/mRNA pairs that are most likely result from indirect regulatory mechanisms. Conclusions Our findings identify novel microRNA/mRNA relationships that can be verified experimentally. We identify both generic microRNA/mRNA regulation mechanisms in the ovary as well as specific microRNA/mRNA controls which are turned on or off in ovarian tumours. Our results suggest that the disease process uses specific mechanisms which may be significant for their utility as early detection biomarkers or in the development of microRNA therapies in treating ovarian cancers. The positively correlated microRNA/mRNA pairs suggest the existence of novel regulatory mechanisms that proceed via intermediate states (indirect regulation) in ovarian tumorigenesis.</p

    Group II Introns Break New Boundaries: Presence in a Bilaterian's Genome

    Get PDF
    Group II introns are ribozymes, removing themselves from their primary transcripts, as well as mobile genetic elements, transposing via an RNA intermediate, and are thought to be the ancestors of spliceosomal introns. Although common in bacteria and most eukaryotic organelles, they have never been reported in any bilaterian animal genome, organellar or nuclear. Here we report the first group II intron found in the mitochondrial genome of a bilaterian worm. This location is especially surprising, since animal mitochondrial genomes are generally distinct from those of plants, fungi, and protists by being small and compact, and so are viewed as being highly streamlined, perhaps as a result of strong selective pressures for fast replication while establishing germ plasm during early development. This intron is found in the mtDNA of an annelid worm, (an undescribed species of Nephtys), where the complete sequence revealed a 1819 bp group II intron inside the cox1 gene. We infer that this intron is the result of a recent horizontal gene transfer event from a viral or bacterial vector into the mitochondrial genome of Nephtys sp. Our findings hold implications for understanding mechanisms, constraints, and selective pressures that account for patterns of animal mitochondrial genome evolutio

    MicroRNA Expression and Regulation in Human Ovarian Carcinoma Cells by Luteinizing Hormone

    Get PDF
    MicroRNAs have been widely-studied with regard to their aberrant expression and high correlation with tumorigenesis and progression in various solid tumors. With the major goal of assessing gonadotropin (luteinizing hormone, LH) contributions to LH receptor (LHR)-positive ovarian cancer cells, we have conducted a genome-wide transcriptomic analysis on human epithelial ovarian cancer cells to identify the microRNA-associated cellular response to LH-mediated activation of LHR.Human ovarian cancer cells (SKOV3) were chosen as negative control (LHR-) and stably transfected to express functional LHR (LHR+), followed by incubation with LH (0-20 h). At different times of LH-mediated activation of LHR the cancer cells were analyzed by a high-density Ovarian Cancer Disease-Specific-Array (DSA, ALMAC™), which profiled ∼ 100,000 transcripts with ∼ 400 non-coding microRNAs.In total, 65 microRNAs were identified to exhibit differential expression in either LHR expressing SKOV3 cells or LH-treated cells, a few of which have been found in the genomic fragile regions that are associated with abnormal deletion or amplification in cancer, such as miR-21, miR-101-1, miR-210 and miR-301a. By incorporating the dramatic expression changes observed in mRNAs, strong microRNA/mRNA regulatory pairs were predicted through statistical analyses coupled with collective computational prediction. The role of each microRNA was then determined through a functional analysis based on the highly-confident microRNA/mRNA pairs.The overall impact on the transcriptome-level expression indicates that LH may regulate apoptosis and cell growth of LHR+ SKOV3 cells, particularly by reducing cancer cell proliferation, with some microRNAs involved in regulatory roles
    • …
    corecore