478 research outputs found

    C32, A Young Star Cluster in IC 1613

    Get PDF
    The Local Group irregular galaxy IC 1613 has remained an enigma for many years because of its apparent lack of star clusters. We report the successful search for clusters among several of the candidate objects identified many years ago on photographic plates. We have used a single HST WFPC2 pointing and a series of images obtained with the WIYN telescope under exceptional seeing conditions, examining a total of 23 of the previously published candidates. All but six of these objects were found to be either asterisms or background galaxies. Five of the six remaining candidates possibly are small, sparse clusters and the sixth, C32, is an obvious cluster. It is a compact, young object, with an age of less than 10 million years and a total absolute magnitude of M_V = -5.78+/-0.16 within a radius of 13 pc.Comment: 5 pages, 5 figures, to be published in the May 2000 issue of the PAS

    Acoustic Faraday effect in Tb3_3Ga5_5O12_{12}

    Full text link
    The transverse acoustic wave propagating along the [100] axis of the cubic Tb3_3Ga5_5O12_{12} (acoustic c44c_{44} mode) is doubly degenerate. A magnetic field applied in the direction of propagation lifts this degeneracy and leads to the rotation of the polarization vector - the magneto-acoustic Faraday rotation. Here, we report on the observation and analysis of the magneto-acoustic Faraday-effect in Tb3_3Ga5_5O12_{12} in static and pulsed magnetic fields. We present also a theoretical model based on magnetoelastic coupling of 4ff electrons to both, acoustic and optical phonons and an effective coupling between them. This model explains the observed linear frequency dependence of the Faraday rotation angle

    The GALEX-SDSS NUV & FUV Flux Density and Local Star-Formation Rate

    Full text link
    We calculate the local UV flux density in the GALEX MIS FUV and NUV bands using redshifts provided by SDSS DR7. Luminosity functions are calculated for the overlapping MIS and SDSS sample, allowing flux densities to be measured and the local star formation rate (SFR) to be calculated using volumes much larger than previous FUV based estimates. We calculate flux densities for a dust corrected low redshift (0.013 < z < 0.1) sample of f[FUV] = 22.24 \pm 3.13 \times 10^25 h ergs s^-1 Hz^-1 Mpc^-3, f[NUV] = 38.54 \pm 5.30 \times 10^25 h ergs s^-1 Hz^-1 Mpc^-3. The star formation rate density found is 0.0312\pm0.0045 h M\odot yr^-1 Mpc^-3. This is larger than published rates recently found using the UV implied SFR, though the major discrepancy is the correction made for dust attenuation and once this is dealt with consistently the results agree well. These values are also consistent with recent Halpha derived SFRs. Once cosmic variance is taken into account most of the recent SFRs at low redshift (z < 0.3) found in the literature can be brought into agreement, however the lowest redshift values (z < 0.045) do appear to be significantly lower.Comment: 14 pages, 10 figures, accepted for publication in MNRA

    Electronic Transport Through a Nuclear-Spin-Polarization-Induced Quantum Wire

    Get PDF
    Electron transport in a low-dimensional structure—the nuclear-spin-polarization-induced quantum wire is theoretically studied. In the proposed system the local nuclear-spin polarization creates the effective hyperfine field that confines the electrons with the spins opposite to the hyperfine field to the regions of maximal nuclear-spin polarization. The influence of the nuclear-spin relaxation and diffusion on the electron energy spectrum and on the conductance of the quantum wire is calculated and the experimental feasibility is discussed

    The kinematics of ionized gas in lyman-break analogs at z ~ 0.2

    Get PDF
    We present results for 19 “Lyman-break analogs” observed with Keck/OSIRIS with an adaptive-optics-assisted spatial resolution of less than 200 pc. We detect satellites/companions, diffuse emission, and velocity shear, all with high signal-to-noise ratios. These galaxies present remarkably high velocity dispersion along the line of sight (~70 km s^(−1)), much higher than standard star-forming spirals in the low-redshift universe. We artificially redshift our data to z ~ 2.2 to allow for a direct comparison with observations of high-z Lyman-break galaxies and find striking similarities between both samples. This suggests that either similar physical processes are responsible for their observed properties, or, alternatively, that it is very difficult to distinguish between different mechanisms operating in the low- versus high-redshift starburst galaxies based on the available data. The comparison between morphologies in the UV/optical continuum and our kinemetry analysis often shows that neither is by itself sufficient to confirm or completely rule out the contribution from recent merger events. We find a correlation between the kinematic properties and stellar mass, in that more massive galaxies show stronger evidence for a disk-like structure. This suggests a co-evolutionary process between the stellar mass buildup and the formation of morphological and dynamical substructure within the galaxy

    Quenching Star Formation at Intermediate Redshifts: Downsizing of the Mass Flux Density in the Green Valley

    Get PDF
    The bimodality in galaxy properties has been observed at low and high redshifts, with a clear distinction between star-forming galaxies in the blue cloud and passively evolving objects in the red sequence; the absence of galaxies with intermediate properties indicates that the quenching of star formation and subsequent transition between populations must happen rapidly. In this paper, we present a study of over 100 transiting galaxies in the so-called green valley at intermediate redshifts (z ~ 0.8). By using very deep spectroscopy with the DEIMOS instrument at the Keck telescope we are able to infer the star formation histories of these objects and measure the stellar mass flux density transiting from the blue cloud to the red sequence when the universe was half its current age. Our results indicate that the process happened more rapidly and for more massive galaxies in the past, suggesting a top-down scenario in which the massive end of the red sequence is forming first. This represents another aspect of downsizing, with the mass flux density moving toward smaller galaxies in recent times

    Electronic transport through nuclear-spin-polarization-induced quantum wire

    Full text link
    Electron transport in a new low-dimensional structure - the nuclear spin polarization induced quantum wire (NSPI QW) is theoretically studied. In the proposed system the local nuclear spin polarization creates the effective hyperfine field which confines the electrons with the spins opposite to the hyperfine field to the regions of maximal nuclear spin polarization. The influence of the nuclear spin relaxation and diffusion on the electron energy spectrum and on the conductance of the quantum wire is calculated and the experimental feasibility is discussed.Comment: 5 pages, 4 figure
    • 

    corecore