60 research outputs found

    The physiology of movement

    Get PDF
    Movement, from foraging to migration, is known to be under the influence of the environment. The translation of environmental cues to individual movement decision making is determined by an individual's internal state and anticipated to balance costs and benefits. General body condition, metabolic and hormonal physiology mechanistically underpin this internal state. These physiological determinants are tightly, and often genetically linked with each other and hence central to a mechanistic understanding of movement. We here synthesise the available evidence of the physiological drivers and signatures of movement and review (1) how physiological state as measured in its most coarse way by body condition correlates with movement decisions during foraging, migration and dispersal, (2) how hormonal changes underlie changes in these movement strategies and (3) how these can be linked to molecular pathways. We reveale that a high body condition facilitates the efficiency of routine foraging, dispersal and migration. Dispersal decision making is, however, in some cases stimulated by a decreased individual condition. Many of the biotic and abiotic stressors that induce movement initiate a physiological cascade in vertebrates through the production of stress hormones. Movement is therefore associated with hormone levels in vertebrates but also insects, often in interaction with factors related to body or social condition. The underlying molecular and physiological mechanisms are currently studied in few model species, and show -in congruence with our insights on the role of body condition- a central role of energy metabolism during glycolysis, and the coupling with timing processes during migration. Molecular insights into the physiological basis of movement remain, however, highly refractory. We finalise this review with a critical reflection on the importance of these physiological feedbacks for a better mechanistic understanding of movement and its effects on ecological dynamics at all levels of biological organization

    Intersexuality in a natural population of the terrestrial isopod Porcellio scaber

    Get PDF
    Intersex phenotypes are rarely observed in natural isopod populations and their expression is typically associated with infection of Wolbachia, a reproductive parasite that manipulates arthropod reproduction. During an intensive sampling effort of a natural population of the isopod Porcellio scaber, an adult individual was isolated that expressed both male and female traits. The intersex individual exhibited clearly developed external male genitalia and carried multiple eggs in its brood pouch. No Wolbachia infection could be identified in this individual, a result that needs to be approached with caution due to suboptimal DNA preservation for diagnostic PCR assays. Wolbachia were, however, detected in two adult females of the same population, and appear closely related to isolates that infect other terrestrial isopod species. This is the first demonstration that intersex phenotypes can arise under natural conditions in P. scaber

    Resistance risk assessment of the novel complex II inhibitor pyflubumide in the polyphagous pest Tetranychus urticae

    Get PDF
    Pyflubumide is a novel selective carboxanilide acaricide that inhibits mitochondrial complex II of spider mite species such as Tetranychus urticae. We explored the baseline toxicity and potential cross-resistance risk of pyflubumide in a reference panel of T. urticae strains resistant to various acaricides with different modes of action. A cyenopyrafen-resistant strain (JPR) was identified as the only strain with low-to-moderate level of cross-resistance to pyflubumide (LC50 = 49.07 mg/L). In a resistance risk assessment approach, JPR was subsequently selected which led to two highly resistant strains JPR-R1 (RR = 466.7) and JPR-R2 (RR = 614.8). Interestingly, compared to adult females, resistance was much less pronounced in adult males and eggs of the two JPR-R strains. In order to elucidate resistance mechanisms, we first sequenced the complex II subunits in susceptible and resistant strains, but target-site insensitivity could not be detected. In contrast, synergism/antagonism experiments strongly suggested that cytochrome P450 monooxygenases are involved in pyflubumide resistance. We therefore conducted genome-wide gene expression experiments to investigate constitutive and induced expression patterns and documented the overexpression of five cytochrome P450 and four carboxyl/choline esterase genes in the JPR-R strains after pyflubumide exposure. Together, we provide a first resistance risk assessment of a novel complex II inhibitor and provide first evidence for metabolic resistance mediated by cytochrome P450s in T. urticae

    Transcriptomic plasticity in the arthropod generalist Tetranychus urticae upon long-term acclimation to different host plants

    Get PDF
    The two-spotted spider mite Tetranychus urticae is an important pest with an exceptionally broad host plant range. This generalist rapidly acclimatizes and adapts to a new host, hereby overcoming nutritional challenges and a novel pallet of constitutive and induced plant defenses. Although recent studies reveal that a broad transcriptomic response upon host plant transfer is associated with a generalist life style in arthropod herbivores, it remains uncertain to what extent these transcriptional changes are general stress responses or host-specific. In the present study, we analyzed and compared the transcriptomic changes that occur in a single T. urticae population upon long-term transfer from Phaseolus vulgaris to a similar, but chemically defended, host (cyanogenic Phaseolus lunatus) and to multiple economically important crops (Glycine max, Gossypium hirsutum, Solanum lycopersicum and Zea mays). These long-term host plant transfers were associated with distinct transcriptomic responses with only a limited overlap in both specificity and directionality, suggestive of a fine-tuned transcriptional plasticity. Nonetheless, analysis at the gene family level uncovered overlapping functional processes, recruiting genes from both well-known and newly discovered detoxification families. Of note, our analyses highlighted a possible detoxification role for Tetranychus-specific short-chain dehydrogenases and single PLAT domain proteins, and manual genome annotation showed that both families are expanded in T. urticae. Our results shed new light on the molecular mechanisms underlying the remarkable adaptive potential for host plant use of generalist arthropods and set the stage for functional validation of important players in T. urticae detoxification of plant secondary metabolites

    Fitness maximization by dispersal : evidence from an invasion experiment

    Get PDF
    Dispersal is essential for population persistence in transient environments. While costs of dispersal are ubiquitous, individual advantages of dispersal remain poorly understood. Not all individuals from a population disperse, and individual heterogeneity in costs and benefits of dispersal underlie phenotype-dependent dispersal strategies. Dispersing phenotypes are always expected to maximize their fitness by adaptive decision making relative to the alternative strategy of remaining philopatric. While this first principle is well acknowledged in theoretical ecology, empirical verification is extremely difficult, due to a plethora of experimental constraints. We studied fitness prospects of dispersal in a game theoretical context using the two-spotted spider mite Tetranychus urticae as a model species. We demonstrate that dispersing phenotypes represent those individuals able to maximize their fitness in a novel, less populated environment reached after dispersal. In contrast to philopatric phenotypes, successful dispersers performed better in a low density post-dispersal context, but worse in a high density philopatric context. They increased fitness about 450% relative to the strategy of remaining philopatric. The optimization of phenotype-dependent dispersal, thus, maximizes fitness

    Horizontal gene transfer contributes to the evolution of arthropod herbivory

    Get PDF
    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants

    Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae

    Get PDF
    Background: Diapause or developmental arrest, is one of the major adaptations that allows mites and insects to survive unfavorable conditions. Diapause evokes a number of physiological, morphological and molecular modifications. In general, diapause is characterized by a suppression of the metabolism, change in behavior, increased stress tolerance and often by the synthesis of cryoprotectants. At the molecular level, diapause is less studied but characterized by a complex and regulated change in gene-expression. The spider mite Tetranychus urticae is a serious polyphagous pest that exhibits a reproductive facultative diapause, which allows it to survive winter conditions. Diapausing mites turn deeply orange in color, stop feeding and do not lay eggs. Results: We investigated essential physiological processes in diapausing mites by studying genome-wide expression changes, using a custom built microarray. Analysis of this dataset showed that a remarkable number, 11% of the total number of predicted T. urticae genes, were differentially expressed. Gene Ontology analysis revealed that many metabolic pathways were affected in diapausing females. Genes related to digestion and detoxification, cryoprotection, carotenoid synthesis and the organization of the cytoskeleton were profoundly influenced by the state of diapause. Furthermore, we identified and analyzed an unique class of putative antifreeze proteins that were highly upregulated in diapausing females. We also further confirmed the involvement of horizontally transferred carotenoid synthesis genes in diapause and different color morphs of T. urticae. Conclusions: This study offers the first in-depth analysis of genome-wide gene-expression patterns related to diapause in a member of the Chelicerata, and further adds to our understanding of the overall strategies of diapause in arthropods

    Identification and characterization of new mutations in mitochondrial cytochrome b that confer resistance to bifenazate and acequinocyl in the spider mite Tetranychus urticae

    Get PDF
    BACKGROUND In spider mites, mutations in the mitochondrial cytochrome b Qo pocket have been reported to confer resistance to the Qo inhibitors bifenazate and acequinocyl. In this study, we surveyed populations of the two‐spotted spider mite Tetranychus urticae for mutations in cytochrome b, linked newly discovered mutations with resistance and assessed potential pleiotropic fitness costs. RESULTS We identified two novel mutations in the Qo site: G132A (equivalent to G143A in fungi resistant to strobilurins) and G126S + A133T (previously reported to cause bifenazate and acequinocyl resistance in Panonychus citri ). Two T. urticae strains carrying G132A were highly resistant to bifenazate but not acequinocyl, whereas a strain with G126S + A133T displayed high levels of acequinocyl resistance, but only moderate levels of bifenazate resistance. Bifenazate and acequinocyl resistance were inherited maternally, providing strong evidence for the involvement of these mutations in the resistance phenotype. Near isogenic lines carrying G132A revealed several fitness penalties in T. urticae ; a lower net reproductive rate (R0), intrinsic rate of increase (rm) and finite rate of increase (LM); a higher doubling time (DT); and a more male‐biased sex ratio. CONCLUSIONS Several lines of evidence were provided to support the causal role of newly discovered cytochrome b mutations in bifenazate and acequinocyl resistance. Because of the fitness costs associated with the G132A mutation, resistant T. urticae populations might be less competitive in a bifenazate‐free environment, offering opportunities for resistance management. © 2019 Society of Chemical Industr

    Long-term population studies uncover the genome structure and genetic basis of xenobiotic and host plant adaptation in the herbivore Tetranychus urticae

    Get PDF
    Pesticide resistance arises rapidly in arthropod herbivores, as can host plant adaptation, and both are significant problems in agriculture. These traits have been challenging to study as both are often polygenic and many arthropods are genetically intractable. Here, we examined the genetic architecture of pesticide resistance and host plant adaptation in the two-spotted spider mite, Tetranychus urticae, a global agricultural pest. We show that the short generation time and high fecundity of T. urticae can be readily exploited in experimental evolution designs for high-resolution mapping of quantitative traits. As revealed by selection with spirodiclofen, an acetyl-CoA carboxylase inhibitor, in populations from a cross between a spirodiclofen-resistant and a spirodiclofen-susceptible strain, and which also differed in performance on tomato, we found that a limited number of loci could explain quantitative resistance to this compound. These were resolved to narrow genomic intervals, suggesting specific candidate genes, including acetyl-CoA carboxylase itself, clustered and copy variable cytochrome P450 genes, and NADPH cytochrome P450 reductase, which encodes a redox partner for cytochrome P450s. For performance on tomato, candidate genomic regions for response to selection were distinct from those responding to the synthetic compound and were consistent with a more polygenic architecture. In accomplishing this work, we exploited the continuous nature of allele frequency changes across experimental populations to resolve the existing fragmented T. urticae draft genome to pseudochromosomes. This improved assembly was indispensable for our analyses, as it will be for future research with this model herbivore that is exceptionally amenable to genetic studies

    Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding

    Get PDF
    The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B. oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism
    corecore