20 research outputs found

    Identification of a transporter complex responsible for the cytosolic entry of nitrogen-containing bisphosphonates

    Get PDF
    Nitrogen-containing-bisphosphonates (N-BPs) are widely prescribed to treat osteoporosis and other bone-related diseases. Although previous studies established that N-BPs function by inhibiting the mevalonate pathway in osteoclasts, the mechanism by which N-BPs enter the cytosol from the extracellular space to reach their molecular target is not understood. Here we implemented a CRISPRi-mediated genome-wide screen and identified SLC37A3 (solute carrier family 37 member A3) as a gene required for the action of N-BPs in mammalian cells. We observed that SLC37A3 forms a complex with ATRAID (all-trans retinoic acid-induced differentiation factor), a previously identified genetic target of N-BPs. SLC37A3 and ATRAID localize to lysosomes and are required for releasing N-BP molecules that have trafficked to lysosomes through fluid-phase endocytosis into the cytosol. Our results elucidate the route by which N-BPs are delivered to their molecular target, addressing a key aspect of the mechanism of action of N-BPs that may have significant clinical relevance

    KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1

    Get PDF
    The mechanistic target of rapamycin complex 1 kinase (mTORC1) is a central regulator of cell growth that responds to diverse environmental signals and is deregulated in many human diseases, including cancer and epilepsy1–3. Amino acids are a key input, and act through the Rag GTPases to promote the translocation of mTORC1 to the lysosomal surface, its site of activation4. Multiple protein complexes regulate the Rag GTPases in response to amino acids, including GATOR1, a GTPase activating protein for RagA, and GATOR2, a positive regulator of unknown molecular function. Here, we identify a four-membered protein complex (KICSTOR) composed of the KPTN, ITFG2, C12orf66, and SZT2 gene products as required for amino acid or glucose deprivation to inhibit mTORC1 in cultured cells. In mice lacking SZT2, mTORC1 signaling is increased in several tissues, including in neurons in the brain. KICSTOR localizes to lysosomes; binds to GATOR1 and recruits it, but not GATOR2, to the lysosomal surface; and is necessary for the interaction of GATOR1 with its substrates, the Rag GTPases, and with GATOR2. Interestingly, several KICSTOR components are mutated in neurological diseases associated with mutations that lead to hyperactive mTORC1 signaling5–10. Thus, KICSTOR is a lysosome-associated negative regulator of mTORC1 signaling that, like GATOR1, is mutated in human disease11,12

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Lysosomal nutrients and the mTORC1 pathway

    No full text
    This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2019Cataloged from student-submitted PDF version of thesis. "February 2019."Includes bibliographical references.The lysosome is the major catabolic organelle, is the site of activation of the master growth regulator mTORC1 (mechanistic target of rapamycin (mTOR) complex 1), and is often deregulated in common diseases, such as cancer. Given the critical role of lysosomes in maintaining cellular homeostasis, a better understanding of lysosomal function and metabolism and its relation to the mTOR pathway is necessary. Most components of the nutrient-sensing machinery upstream of mTORC1 localize to the lysosomal surface, and amino acids generated by lysosomes regulate mTORC1 by promoting its translocation there, a key step in its activation. Activation of mTORC1 by the amino acid arginine requires SLC38A9, a poorly understood lysosomal membrane protein with homology to amino acid transporters. To study SLC38A9 function at the lysosome, we developed a novel method for the rapid isolation of intact mammalian lysosomes suitable for metabolite profiling.First, we validate that SLC38A9 is an arginine sensor for the mTORC1 pathway, and we uncover a central role for SLC38A9 in amino acid homeostasis. SLC38A9 mediates the transport, in an arginine-regulated fashion, of many essential amino acids out of lysosomes to be used in growth-promoting processes. Pancreatic cancer cells, which use lysosomal protein degradation as a nutrient source, require SLC38A9 to form tumors. Thus, through SLC38A9, arginine acts a lysosomal messenger to connect mTORC1 activation and the release of the essential amino acids to drive cell growth. Finally, by performing quantitative proteomic analyses of rapidly isolated lysosomes, we find that ribosome degradation provides the lysosomal arginine that promotes SLC38A9 activation. Lysosome degradation of ribosomes is mediated by NUFIP1 (nuclear fragile X mental retardation-interacting protein 1).The starvation-induced degradation of ribosomes via autophagy (ribophagy) depends on the capacity of NUFIP1 to bind LC3B and promotes cell survival. Thus, the NUFIP1-mediated degradation of ribosomes provides both the necessary substrate to activate SLC38A9 and the nutrients needed to promote cell survival under starvation. Altogether, this work provides insight into the regulation of lysosomal nutrients and their role in cellular growth and survival.by Gregory A. Wyant.Ph. D.Ph.D. Massachusetts Institute of Technology, Department of Biolog

    Identification of a transporter complex responsible for the cytosolic entry of nitrogen-containing bisphosphonates

    No full text
    Nitrogen-containing-bisphosphonates (N-BPs) are a class of drugs widely prescribed to treat osteoporosis and other bone-related diseases. Although previous studies have established that N-BPs function by inhibiting the mevalonate pathway in osteoclasts, the mechanism by which N-BPs enter the cytosol from the extracellular space to reach their molecular target is not understood. Here, we implemented a CRISPRi-mediated genome-wide screen and identified SLC37A3 (solute carrier family 37 member A3) as a gene required for the action of N-BPs in mammalian cells. We observed that SLC37A3 forms a complex with ATRAID (all-trans retinoic acid-induced differentiation factor), a previously identified genetic target of N-BPs. SLC37A3 and ATRAID localize to lysosomes and are required for releasing N-BP molecules that have trafficked to lysosomes through fluid-phase endocytosis into the cytosol. Our results elucidate the route by which N-BPs are delivered to their molecular target, addressing a key aspect of the mechanism of action of N-BPs that may have significant clinical relevance

    A PEROXO-Tag enables rapid isolation of peroxisomes from human cells

    No full text
    Peroxisomes are metabolic organelles that perform a diverse array of critical functions in human physiology. Traditional isolation methods for peroxisomes can take more than 1 h to complete and can be laborious to implement. To address this, we have now extended our prior work on rapid organellar isolation to peroxisomes via the development of a peroxisomally localized 3XHA epitope tag (“PEROXO-Tag”) and associated immunoprecipitation (“PEROXO-IP”) workflow. Our PEROXO-IP workflow has excellent reproducibility, is easy to implement, and achieves highly rapid (~10 min post homogenization) and specific isolation of human peroxisomes, which we characterize here via proteomic profiling. By offering speed, specificity, reproducibility, and ease of use, the PEROXO-IP workflow should facilitate studies on the biology of peroxisomes

    NUFIP1 is a ribosome receptor for starvation-induced ribophagy

    No full text
    The lysosome degrades and recycles macromolecules, signals to the master growth regulator mTORC1 [mechanistic target of rapamycin (mTOR) complex 1], and is associated with human disease.We performed quantitative proteomic analyses of rapidly isolated lysosomes and found that nutrient levels and mTOR dynamically modulate the lysosomal proteome. Upon mTORC1 inhibition, NUFIP1 (nuclear fragile Xmental retardation-interacting protein 1) redistributes from the nucleus to autophagosomes and lysosomes. Upon these conditions, NUFIP1 interacts with ribosomes and delivers them to autophagosomes by directly binding to microtubule-associated proteins 1A/1B light chain 3B (LC3B).The starvation-induced degradation of ribosomes via autophagy (ribophagy) depends on the capacity of NUFIP1 to bind LC3B and promotes cell survival.We propose that NUFIP1 is a receptor for the selective autophagy of ribosomes.National Institutes of Health (U.S.) (Grant R01 CA103866)National Institutes of Health (U.S.) (Grant R01 CA129105)National Institutes of Health (U.S.) (Grant R37 AI47389)United States. Department of Defense (Grant W81XWH-15-1-0230)United States. Department of Defense (Grant W81XWH-15-1-0337

    SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism

    No full text
    One-carbon metabolism generates the one-carbon units required to synthesize many critical metabolites, including nucleotides. The pathway has cytosolic and mitochondrial branches, and a key step is the entry, through an unknown mechanism, of serine into mitochondria, where it is converted into glycine and formate. In a CRISPR-based genetic screen in human cells for genes of the mitochondrial pathway, we found sideroflexin 1 (SFXN1), a multipass inner mitochondrial membrane protein of unclear function. Like cells missing mitochondrial components of one-carbon metabolism, those null for SFXN1 are defective in glycine and purine synthesis. Cells lacking SFXN1 and one of its four homologs, SFXN3, have more severe defects, including being auxotrophic for glycine. Purified SFXN1 transports serine in vitro. Thus, SFXN1 functions as a mitochondrial serine transporter in one-carbon metabolism.National Institutes of Health (U.S.) (Grant R01 CA103866)National Institutes of Health (U.S.) (Grant R01 CA129105)National Institutes of Health (U.S.) (Grant R37 AI47389)United States. Department of Defense (Grant W81XWH-07–0448
    corecore