230 research outputs found

    CANNABIS USE AMONG A SAMPLE OF 16 TO 18 YEAR-OLD STUDENTS IN SWITZERLAND

    Get PDF
    Background: The aim of this study was to estimate the prevalence of cannabis use among Swiss students and to assess their attitudes regarding health and safety issues associated with drug use. Subjects and methods: After a workshop, 173 students (23.1% male, 75.7% female; 44.4% age 16, 43.8% age 17 and 11.8% age 18) from a Swiss school were surveyed by questionnaire. Results: 59.3% (n=103) of all participants had tried cannabis, and 30.1% of those who reported cannabis use had consumed more than 100 joints. Of those 103 students with cannabis experience, 6.8% rated the risk of cannabis-related psychic effects as low, and 9.8% were not concerned about driving under the influence of cannabis. In cases of heavy cannabis use, the chance of increased tobacco, alcohol or other drug use is higher than for those with less or no cannabis use at all (odds ratios of 4.33-10.86). Conclusions: This paper deals primarily with cannabis prevalence data in adolescents from previous studies and sources, and shows that our findings deviate significantly - and surprisingly - from past research. Our data from a school survey indicates higher cannabis use than data from official drug policy studies. Additionally, our data shows that the students’ self-reported attitudes towards health and safety issues were mostly realistic. The examination of methodological issues that might impact prevalence estimates should be added to the cannabis literature

    Decomposers and root feeders interactively affect plant defence in Sinapis alba

    Get PDF
    Aboveground herbivory is well known to change plant growth and defence. In contrast, effects of soil organisms, acting alone or in concert, on allocation patterns are less well understood. We investigated separate and combined effects of the endogeic earthworm species Aporrectodea caliginosa and the root feeding nematode species Pratylenchus penetrans and Meloidogyne incognita on plant responses including growth and defence metabolite concentrations in leaves of white mustard, Sinapis alba. Soil biota had a strong impact on plant traits, with the intensity varying due to species combinations. Nematode infestation reduced shoot biomass and nitrogen concentration but only in the absence of earthworms. Earthworms likely counteracted the negative effects of nematodes. Infestation with the migratory lesion-nematode P. penetrans combined with earthworms led to increased root length. Earthworm biomass increased in the presence of this species, indicating that these nematodes increased the food resources of earthworms—presumably dead and decaying roots. Nitrogen-based defence compounds, i.e. glucosinolates, did not correlate with nitrogen levels. In the presence of earthworms, concentrations of aromatic glucosinolates in leaves were significantly increased. In contrast, infection with P. penetrans strongly decreased concentrations of glucosinolates (up to 81%). Infestation with the sedentary nematode M. incognita induced aromatic glucosinolates by more than 50% but only when earthworms were also present. Myrosinase activities, glucosinolate-hydrolysing enzymes, were unaffected by nematodes but reduced in the presence of earthworms. Our results document that root-feeding nematodes elicit systemic plant responses in defence metabolites, with the responses varying drastically with nematode species of different functional groups. Furthermore, systemic plant responses are also altered by decomposer animals, such as earthworms, challenging the assumption that induction of plant responses including defence traits is restricted to herbivores. Soil animals even interact and modulate the individual effects on plant growth and plant defence, thereby likely also influencing shoot herbivore attack

    MAPK Signaling Determines Anxiety in the Juvenile Mouse Brain but Depression-Like Behavior in Adults

    Get PDF
    MAP kinase signaling has been implicated in brain development, long-term memory, and the response to antidepressants. Inducible Braf knockout mice, which exhibit protein depletion in principle forebrain neurons, enabled us to unravel a new role of neuronal MAPK signaling for emotional behavior. Braf mice that were induced during adulthood showed normal anxiety but increased depression-like behavior, in accordance with pharmacological findings. In contrast, the inducible or constitutive inactivation of Braf in the juvenile brain leads to normal depression-like behavior but decreased anxiety in adults. In juvenile, constitutive mutants we found no alteration of GABAergic neurotransmission but reduced neuronal arborization in the dentate gyrus. Analysis of gene expression in the hippocampus revealed nine downregulated MAPK target genes that represent candidates to cause the mutant phenotype

    Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community

    Get PDF
    In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the “boom-bust” behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions.

    Dll1 Haploinsufficiency in Adult Mice Leads to a Complex Phenotype Affecting Metabolic and Immunological Processes

    Get PDF
    BACKGROUND: The Notch signaling pathway is an evolutionary conserved signal transduction pathway involved in embryonic patterning and regulation of cell fates during development and self-renewal. Recent studies have demonstrated that this pathway is integral to a complex system of interactions, involving as well other signal transduction pathways, and implicated in distinct human diseases. Delta-like 1 (Dll1) is one of the known ligands of the Notch receptors. The role of the Notch ligands is less well understood. Loss-of-function of Dll1 leads to embryonic lethality, but reduction of Delta-like 1 protein levels has not been studied in adult stage. METHODOLOGY/PRINCIPAL FINDINGS: Here we present the haploinsufficient phenotype of Dll1 and a missense mutant Dll1 allele (Dll1(C413Y)). Haploinsufficiency leads to a complex phenotype with several biological processes altered. These alterations reveal the importance of Dll1 mainly in metabolism, energy balance and in immunology. The animals are smaller, lighter, with altered fat to lean ratio and have increased blood pressure and a slight bradycardia. The animals have reduced cholesterol and triglyceride levels in blood. At the immunological level a subtle phenotype is observed due to the effect and fine-tuning of the signaling network at the different levels of differentiation, proliferation and function of lymphocytes. Moreover, the importance of the proteolytic regulation of the Notch signaling network emphasized. CONCLUSIONS/SIGNIFICANCE: In conclusion, slight alterations in one player of Notch signaling alter the entire organism, emphasizing the fine-tuning character of this pathway in a high number of processes

    Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders.

    Get PDF
    Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5' tRNA-derived small RNA fragments. Accumulation of 5' tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell size and increased apoptosis of cortical, hippocampal and striatal neurons. Mechanistically, we demonstrate that angiogenin binds with higher affinity to tRNAs lacking site-specific NSun2-mediated methylation and that the presence of 5' tRNA fragments is sufficient and required to trigger cellular stress responses. Furthermore, the enhanced sensitivity of NSun2-deficient brains to oxidative stress can be rescued through inhibition of angiogenin during embryogenesis. In conclusion, failure in NSun2-mediated tRNA methylation contributes to human diseases via stress-induced RNA cleavage
    corecore