1,970 research outputs found

    Growth of Dust as the Initial Step Toward Planet Formation

    Get PDF
    We discuss the results of laboratory measurements and theoretical models concerning the aggregation of dust in protoplanetary disks, as the initial step toward planet formation. Small particles easily stick when they collide and form aggregates with an open, often fractal structure, depending on the growth process. Larger particles are still expected to grow at collision velocities of about 1m/s. Experiments also show that, after an intermezzo of destructive velocities, high collision velocities above 10m/s on porous materials again lead to net growth of the target. Considerations of dust-gas interactions show that collision velocities for particles not too different in surface-to-mass ratio remain limited up to sizes about 1m, and growth seems to be guaranteed to reach these sizes quickly and easily. For meter sizes, coupling to nebula turbulence makes destructive processes more likely. Global aggregation models show that in a turbulent nebula, small particles are swept up too fast to be consistent with observations of disks. An extended phase may therefore exist in the nebula during which the small particle component is kept alive through collisions driven by turbulence which frustrates growth to planetesimals until conditions are more favorable for one or more reasons.Comment: Protostars and Planets V (PPV) review. 18 pages, 5 figure

    The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments

    Full text link
    The growth processes from protoplanetary dust to planetesimals are not fully understood. Laboratory experiments and theoretical models have shown that collisions among the dust aggregates can lead to sticking, bouncing, and fragmentation. However, no systematic study on the collisional outcome of protoplanetary dust has been performed so far so that a physical model of the dust evolution in protoplanetary disks is still missing. We intend to map the parameter space for the collisional interaction of arbitrarily porous dust aggregates. This parameter space encompasses the dust-aggregate masses, their porosities and the collision velocity. With such a complete mapping of the collisional outcomes of protoplanetary dust aggregates, it will be possible to follow the collisional evolution of dust in a protoplanetary disk environment. We use literature data, perform own laboratory experiments, and apply simple physical models to get a complete picture of the collisional interaction of protoplanetary dust aggregates. In our study, we found four different types of sticking, two types of bouncing, and three types of fragmentation as possible outcomes in collisions among protoplanetary dust aggregates. We distinguish between eight combinations of porosity and mass ratio. For each of these cases, we present a complete collision model for dust-aggregate masses between 10^-12 and 10^2 g and collision velocities in the range 10^-4 to 10^4 cm/s for arbitrary porosities. This model comprises the collisional outcome, the mass(es) of the resulting aggregate(s) and their porosities. We present the first complete collision model for protoplanetary dust. This collision model can be used for the determination of the dust-growth rate in protoplanetary disks.Comment: accepted by Astronomy and Astrophysic

    Super-resolution microscopy of mitochondria.

    Get PDF
    Mitochondria, the powerhouses of the cell, are essential organelles in eukaryotic cells. With their complex inner architecture featuring a smooth outer and a highly convoluted inner membrane, they are challenging objects for microscopy. The diameter of mitochondria is generally close to the resolution limit of conventional light microscopy, rendering diffraction-unlimited super-resolution light microscopy (nanoscopy) for imaging submitochondrial protein distributions often mandatory. In this review, we discuss what can be expected when imaging mitochondria with conventional diffraction-limited and diffraction-unlimited microscopy. We provide an overview on recent studies using super-resolution microscopy to investigate mitochondria and discuss further developments and challenges in mitochondrial biology that might by addressed with these technologies in the future

    Papers in New Guinea Linguistics No. 14

    Get PDF

    Papers in Linguistics of Melanesia No. 3

    Get PDF

    General Papuan Characteristics

    Get PDF
    corecore