3,560 research outputs found

    Dielectric function of the semiconductor hole gas

    Get PDF
    We study the dielectric function of the homogeneous hole gas in p-doped zinc-blende III-V bulk semiconductors within random phase approximation with the valence band being modeled by Luttinger's Hamiltonian in the spherical approximation. In the static limit we find a beating of Friedel oscillations between the two Fermi momenta for heavy and light holes, while at large frequencies dramatic corrections to the plasmon dispersion occur.Comment: 4 pages, 1 figure included. Version to appear in Europhys. Let

    Double Quantum Dots in Carbon Nanotubes

    Full text link
    We study the two-electron eigenspectrum of a carbon-nanotube double quantum dot with spin-orbit coupling. Exact calculation are combined with a simple model to provide an intuitive and accurate description of single-particle and interaction effects. For symmetric dots and weak magnetic fields, the two-electron ground state is antisymmetric in the spin-valley degree of freedom and is not a pure spin-singlet state. When double occupation of one dot is favored by increasing the detuning between the dots, the Coulomb interaction causes strong correlation effects realized by higher orbital-level mixing. Changes in the double-dot configuration affect the relative strength of the electron-electron interactions and can lead to different ground state transitions. In particular, they can favor a ferromagnetic ground state both in spin and valley degrees of freedom. The strong suppression of the energy gap can cause the disappearance of the Pauli blockade in transport experiments and thereby can also limit the stability of spin-qubits in quantum information proposals. Our analysis is generalized to an array of coupled dots which is expected to exhibit rich many-body behavior.Comment: 14 pages, 11 pages and 1 table. Typos in text and Figs.4 and 6 correcte

    Few-Body Bound Complexes in One-dimensional Dipolar Gases and Non-Destructive Optical Detection

    Full text link
    We consider dipolar interactions between heteronuclear molecules in low-dimensional geometries. The setup consists of two one-dimensional tubes. We study the stability of possible few-body complexes in the regime of repulsive intratube interaction, where the binding arises from intertube attraction. The stable dimers, trimers, and tetramers are found and we discuss their properties for both bosonic and fermionic molecules. To observe these complexes we propose an optical non-destructive detection scheme that enables in-situ observation of the creation and dissociation of the few-body complexes. A detailed description of the expected signal of such measurements is given using the numerically calculated wave functions of the bound states. We also discuss implications on the many-body physics of dipolar systems in tubular geometries, as well as experimental issues related to the external harmonic confinement along the tube and the prospect of applying an in-tube optical lattice to increase the effective dipole strength.Comment: 16 pages, 15 figures, published versio

    Resolvent estimates for normally hyperbolic trapped sets

    Full text link
    We give pole free strips and estimates for resolvents of semiclassical operators which, on the level of the classical flow, have normally hyperbolic smooth trapped sets of codimension two in phase space. Such trapped sets are structurally stable and our motivation comes partly from considering the wave equation for Kerr black holes and their perturbations, whose trapped sets have precisely this structure. We give applications including local smoothing effects with epsilon derivative loss for the Schr\"odinger propagator as well as local energy decay results for the wave equation.Comment: Further changes to erratum correcting small problems with Section 3.5 and Lemma 4.1; this now also corrects hypotheses, explicitly requiring trapped set to be symplectic. Erratum follows references in this versio

    (3+1) Massive Dirac Fermions with Ultracold Atoms in Optical Lattices

    Full text link
    We propose the experimental realization of (3+1) relativistic Dirac fermions using ultracold atoms in a rotating optical lattice or, alternatively, in a synthetic magnetic field. This approach has the advantage to give mass to the Dirac fermions by coupling the ultracold atoms to a Bragg pulse. A dimensional crossover from (3+1) to (2+1) Dirac fermions can be obtained by varying the anisotropy of the lattice. We also discuss under which conditions the interatomic potentials give rise to relativistically invariant interactions among the Dirac fermions

    Aircraft Cabin Noise Minimization Via Neural Network Inverse Model

    Get PDF
    This paper describes research to investigate an artificial neural network (ANN) approach to minimize aircraft cabin noise in flight. The ANN approach is shown to be able to accurately model the non-linear relationships between engine unbalance, airframe vibration, and cabin noise to overcome limitations associated with traditional linear influence coefficient methods. ANN system inverse models are developed using engine test-stand vibration data and on-airplane vibration and noise data supplemented with influence coefficient empirical data. The inverse models are able to determine balance solutions that satisfy cabin noise specifications. The accuracy of the ANN model with respect to the real system is determined by the quantity and quality of test stand and operational aircraft data. This data-driven approach is particularly appealing for implementation on future systems that include continuous monitoring processes able to capture data while in operation

    A Simple Passive Scalar Advection-Diffusion Model

    Full text link
    This paper presents a simple, one-dimensional model of a randomly advected passive scalar. The model exhibits anomalous inertial range scaling for the structure functions constructed from scalar differences. The model provides a simple computational test for recent ideas regarding closure and scaling for randomly advected passive scalars. Results suggest that high order structure function scaling depends on the largest velocity eddy size, and hence scaling exponents may be geometry-dependent and non-universal.Comment: 30 pages, 11 figure

    Optical Self Energy in Graphene due to Correlations

    Full text link
    In highly correlated systems one can define an optical self energy in analogy to its quasiparticle (QP) self energy counterpart. This quantity provides useful information on the nature of the excitations involved in inelastic scattering processes. Here we calculate the self energy of the intraband optical transitions in graphene originating in the electron-electron interaction (EEI) as well as electron-phonon interaction (EPI). Although optics involves an average over all momenta (kk) of the charge carriers, the structure in the optical self energy is nevertheless found to mirror mainly that of the corresponding quasiparticles for kk equal to or near the Fermi momentum kFk_F. Consequently plasmaronic structures which are associated with momenta near the Dirac point at k=0k=0 are not important in the intraband optical response. While the structure of the electron-phonon interaction (EPI) reflects the sharp peaks of the phonon density of states, the excitation spectrum associated with the electron-electron interaction is in comparison structureless and flat and extends over an energy range which scales linearly with the value of the chemical potential. Modulations seen on the edge of the interband optical conductivity as it rises towards its universal background value are traced to structure in the quasiparticle self energies around kFk_F of the lower Dirac cone associated with the occupied states.Comment: 30 pages, 10 figure

    The curvature of semidirect product groups associated with two-component Hunter-Saxton systems

    Full text link
    In this paper, we study two-component versions of the periodic Hunter-Saxton equation and its μ\mu-variant. Considering both equations as a geodesic flow on the semidirect product of the circle diffeomorphism group \Diff(\S) with a space of scalar functions on §\S we show that both equations are locally well-posed. The main result of the paper is that the sectional curvature associated with the 2HS is constant and positive and that 2μ\muHS allows for a large subspace of positive sectional curvature. The issues of this paper are related to some of the results for 2CH and 2DP presented in [J. Escher, M. Kohlmann, and J. Lenells, J. Geom. Phys. 61 (2011), 436-452].Comment: 19 page
    • …
    corecore