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Figure 3. The detailed neural network inverse model, which maps from cabin noise specification to engine balancing solution. The ANN # I is used to learn
the relationship from cabin noise to on-wing, in-flight vibration. The ANN #2 is used to learn the relationship from on-wing, in-flight vibration to test-
stand vibration. At last, the ANN #3 is used to learn the relationship from test-stand vibration to trial weights. Each network is trained separately.

bins) and 24(4 components x 6 frequency bins) for ANN # 1,
24 (4 components x 6 frequency bins) and 36 (6 components
x 6 frequency bins) for ANN #2, 36 (6 components x 6
frequency bins) and 4 for ANN #3. According to [4], those
amplitude and phase representation are all converted into real
and imaginary representation before being presented to the
networks for training.

The generated datasets are divided into two parts, a
training set and a validation set, which is used to prevent
network overfitting. Each network is set up as multilayer
perceptrons (MLP) and trained by the Levenberg-Marquardt
algorithm [7]. At the end of training, a zero vector (24-by-1),
which corresponds to zero cabin noise on the LHS and RHS,
is presented to ANN #1 as an input. It is fed through the
ANN #1, ANN #2 and ANN #3 to come up with a solution to
balance the fan and LPT on the engine. This balance solution
is supposed to be the trial weights to generate the
corresponding zero cabin noise. However, this proved to be
NOT the case.

C. Validation

Different network setups are tried and different training
algorithms are employed, but the inverse model always
generate different balance solutions with large variance in
terms of different amplitude and phase angle at every run of
network training. When those balance solutions are put on
back the engine, their corresponding cabin noise can be
computed by ICcabin in the same way described in the data

generation section. The resulting cabin noise is not
necessarily lower than the as-is cabin noise but mostly
higher, which obviously shows that there is something
unusual with either the model or the data. To demonstrate the
validity of the neural network inverse model, instead of
having a zero vector to ANN #1 as input, the as-is cabin
noise is presented. If the neural network inverse model works
properly in terms of finding the mapping from in-flight cabin
noise to test-stand vibration, and further to trial weights, it
should produce zero balancing solution from ANN #3
apparently, which means no trial weight should be added on
the engine to get the as-is cabin noise. The experiment shows
it does perform as expected. This also proves that the neural
network inverse model is correct. When Equation (1) and (2)
are re-examined, it is realized that, to make the assumption
of system linearity valid, the IC matrix Rff) has to be the
same as the Ras.s,() in Equation (3):

Xass(6 = R.,,s6()Fa5is (3)

So in Equation (2), it can be expressed as follows:

X'(f9 = (X.si69 + AX(J)) = Rsiszs6Fasis + RWAF = R(f)F. (4)

But this is not generally true in reality. To prove this, the
known ICtestceij is inversed and then used together with the
known as-is test-stand vibe data to compute the residual mass
unbalance on the engine, as shown in equation (5):

(5)
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If the assumption of system linearity holds, the residual mass
unbalance should be the same across the frequency spectrum.
But this simple computation based on equation (5) shows the
inconsistence of computed residual unbalance, which
demonstrates the difference between the as-is IC matrix
Ra,,5W() and the IC matrix R(f) computed by the two-plane
engine balancing approach. This difference brings confusions
into the generated data, which makes it very difficult for the
neural network inverse model to discover the true correlation
between cabin noise and test-stand vibration. It is also
demonstrated that more real test cell and flight test data are
needed directly to investigate the relationship between test-
stand vibration and cabin noise.

111. THE MODELING ON THE DATA FROM EMPIRICAL MODELS

Although more real data are needed to look into the true
relationship between cabin noise and test-stand vibration, it
is believed that neural network inverse models can play an
important role in unraveling this relationship. In the proof-of-
concept experiments for the neural network inverse model's
effectivity in cabin noise minimization problem, more data
are generated by empirical engine/airplane models to see if
the neural network model can correctly discover the
relationship from the data. Actually, the data generated from
the empirical engine/airplane models can be obtained from
ongoing data-collection processes if necessary.

A. Data Generation

It has been shown that the problem of modeling on the
real test data lies in the inconsistence of IC matrix between
the R(f) computed by two-plane balancing approach and the
R,,5jW(fi. To avoid this, the R<s5s69 is forced to be equal to R6()
in the empirical model. In other words, given known residual
mass unbalance on engine, the ICtestce,IConwing and ICcabin
which are computed as in Section II.A, are used as as-is IC
matrices to generate as-is responses for test-stand vibration,
on-wing vibration, and cabin noise. Except for this
difference, the way that the data were generated was the

same as described in section 2.1. To test the robustness of the
neural network inverse model, seven cases with different
residual mass unbalances on the fan and LPT are tried. In the
experiments, the inverse model method is proved valid in all
these different cases. Also, the trial weights are applied on
the empirical IC models to generate simulated data.

Table 1. Residual mass unbalances in the 7 cases.

B. Modeling

The same inverse model as shown in Figure 3 can be
applied on the data from the empirical models to look into
the relationship between test-stand vibe and cabin noise. The
data are also divided into training and validation sets to
prevent overfitting, as in section II.B. Each network is set up
as multilayer perceptrons (MLP) and trained by the
Levenberg-Marquardt algorithm. At the end of training, a
zero vector (24-by-1), which corresponds to zero cabin noise
on LHS and RHS, is presented to ANN #1 as input. It is fed
through ANN #1, ANN #2 and ANN #3 to come up with a
solution to balance Fan and LPT. This balance solution is
supposed to be the trial weights, which should be put on the
engine to generate the corresponding zero cabin noise. The
experimental results are shown in section III.C.

tNHi abinoiS ise= specifiation

Train off line using available test ceil Train ,ff-line using ayailable test cefl and
vibratiun and correspurnding trial weight data fligh: tost enigme vibration data

Train sff^line using available flight test
engine vibration and cabin: noise data

ANN ri ANNs2' ANN'i'3
TEST CELL ENGINE VIBE ON-WING ENGINE VISE

Figure 4. The neural network model in the opposite direction to the model in Figure 3.
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Fan - residual LPT - residual

Amount Angle Amount Angle

\ (g/cm) (deg) (g/cm) (deg)
Case 0 558 70 309 250

Case I 237 140 0 0

Case 2 480 210 0 0

Case 3 184 305 492 154

Case 4 769 255 309 247

Case 5 558 65 170 225

Case 6 1117 230 309 285
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Another neural network model is constructed in the opposite
direction to the model in Figure 3. It is shown in Figure 4,
which uses ANN #1' to learn from trial weight on-engine to
test-stand vibe, uses ANN #2' to learn from test-stand vibe to
engine vibe on-wing and uses ANN #3' to learn from engine
vibe on-wing to cabin noise in flight. Each network is trained
separately. At the end of training, it would be interesting to
present the balancing solution from the model in Figure 3 to
ANN #1' as input to see if ANN #3' can come up with the
output of a zero vector, which corresponds to the zero cabin
noise. This way, the functional mapping between cabin noise
and test-stand engine vibe can be proved to exist in both
directions. The experimental results are shown in section
III.C.

C. Experimental Results

The neural network inverse model using ANN #1, ANN
#2 and ANN #3 is set up as multilayer perceptrons. Same as
described in section II.B, the dimensions of input vector and
output vector in each neural network are respectively, 24x 1
and 24xl for ANN #1, 24xI and 36xl for ANN #2, 36xI
and 4x I for ANN #3. All the complex data are expressed in
the format of real and imaginary. After some trials, the
network architect is selected as 15-24, 15-36 and 18-4 for
ANN #1, #2 and #3, respectively. The transfer functions of
the hidden layer and output layer are sigmoid and linear.
Each network is trained separately using the Levenberg-
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Marquardt algorithm, which is shown to be faster than other
backpropagation variants. During the course of training, the
performance on validation set is monitored for the early
stopping of training in order to prevent overfitting. At the
end of training, a zero vector, which corresponds to zero
cabin noise on the LHS and RHS, is presented to ANN #1 as
input. It is fed through ANN #1, ANN #2 and ANN #3 to
come up with a solution AF to balance Fan and LPT. Putting
the AF back on the engine, a nearly zero (if not zero) cabin
noise should be returned based on Equation (6) as:

X'ICCaInF' = ICcaGbn(Fa,is + AF), (6)

if the modeling is correct. Figure 5 shows the results of the
balancing solution and the comparison of the cabin noise
before/after the engine is balanced from ten runs of network
training with a random initial state. In the Figure 5(a), the
amount and the angular position of the balancing weight is
indicated by the red square, while the residual mass
unbalance is represented by the blue asterisk. In the Figure
5(b)(c), the vibration/noise before and after the engine is
balanced are represented by the red dashed line and the blue
solid line, respectively. Clearly, the average of the results
accurately estimates the mass unbalance on the engine and
the test cell vibration and the cabin noise are reduced
dramatically after the engine is balanced. The neural network
inverse model is also proved valid on all the other unbalance
cases.
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Figure 5. The results on unbalancing Case 0. (a) Residual Unbalance & Balancing Solution on Fan and LPT; (b) Test-stand Vibe Response before/after
Balancing; (c) Cabin Noise before/after Balancing.
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The neural network model shown in Figure 4 is trained
with the same datasets used in the inverse model (see Figure
3). The input and output of ANN #1', #2' and #3' are the
output and input of ANN #3, #2 and #1, accordingly. After
some trials, the network architect is selected as 4-36, 15-24
and 15-24 for ANN #1', #2' and #3', respectively. The
transfer functions of the first hidden layer and output layer
were sigmoid and linear, respectively. Each network is
trained separately using the Levenberg-Marquardt algorithm.
At the end of training, the balancing solution generated from
the previous neural network inverse model (ANN #1, #2 and
#3) is presented to ANN #1' as input to be fed through the
network model. By doing so, the ANN #1' and 3' produced
the similar test-stand vibration response and cabin noise as
the results generated by Equation (6). This proves that the
validity of the neural network inverse model by showing the
feasibility of the modeling from both directions of data
mapping paths.

IV. CONCLUSIONS

A new neural network approach is developed and
shown to be able to accurately model the relationships
between engine unbalance and vibration/noise to
overcome limitations associated with traditional linear
influence coefficient methods. This report illustrates the
limitations of the traditional methods, and shows that the
ANN methods are able to account for them and thus provide
more accurate model representations. The methods are used
to determine test-stand or on-wing balance solutions
to satisfy cabin noise specifications. The accuracy of the
ANN model with respect to the real system is determined by
the quantity of experimental data made available from test
stands and/or operational aircraft. Thus, ongoing processes
to capture this data will be required to ensure sufficient data
is available to facilitate successful implementation. Although
this paper is contributed to minimize in-flight cabin noise,
the techniques applied can be easily adapted to accommodate
vibration data from actual propulsion systems to the
diagnosis of the health conditions of other system
components.

Networks, Proceedings of the IJCNN'02 International Joint
Conference on, vol.3, pp. 2866 -2871, 2002.

[3] X. Hu, J. Slepski, J. Vian, D.C. Wunsch II, "Vibration Analysis Via
Neural Network Inverse Models To Determine Aircraft Engine
Unbalance Condition," Neural Networks, Proceedings of the
IJCNN'03 International Joint Conference on, vol.4, pp.3001-3006,
2003.

[4] X. Hu, M. Travis, J. Vian, D.C. Wunsch II, "Aircraft Engine Balancing
Using Neural Network Inverse Model," Technical Report, Boeing
Phantom Work, August, 2003.

[5] J.L. White, S.A. Shipley, T.F. Yantis, "Active Control Studies of
Structurally Transmitted Engine Vibration on Commercial Airplanes,"
Proceedings ofthe 12th Intl Modal Analysis Conf., January, 1994.

[6] J.L. White, M.A. Heidari, T.F. Yantis, "A Study of Engine Excited
Non-linear Vibro-acoustics in Commerical Airplanes," Proceedings of
15th International Model Analysis Conference, p.1503, 1997.

[7] Simon Haykin, Neural Networks: a comprehensive foundation, 2nd Ed.,
Prentice Hall, New Jersey, 1999.

[8] T. Brotherton, G. Chadderdon, P. Grabill, "Automated Rule Extraction
for Engine Vibration Analysis," Proceedings of IEEE Aerospace
Conference, vol. 3, pp. 29-38, 1999.

[9] A.C. McCormick, A.K. Nandi, "Real-Time Classification of Rotating
Shaft Loading Conditions Using Artificial Neural Networks," IEEE
Trans. On Neural Networks, Vol. 8, No.3, pp. 748 - 757, May, 1997.

[10] J. T. Renwick, "Vibration Analysis - A Proven Technique as A
Predictive Maintenance Tool," IEEE Trans. Ind. Applicat., vol. 21, pp.
324-332, Mar, 1985.

[11] J. S. Mitchell. An Introduction to Machinery Analysis and Monitoring
- 2nd ed. PennWell PubI. Comp. 1993.

[12] R. R. Schoen et al., "An Unsupervised, On-line System for Induction
Motor Fault Detection using Stator Current Monitoring", IEEE Trans.
Ind. Applicat., vol. 31, no. 6, pp. 1274-1279, 1995.

[13] T. I. Lui, J.M. Mengel, "Intelligent Monitoring for Ball Bearing
Conditions", Mech. Syst. Signal Processing, vol. 6, no. 5, pp. 419431,
Sept., 1992.

[14] C. K. Mechefske, J. Mathew, "Fault Detection and Diagnosis in Low-
speed Rolling Element Bearings Part 1: The Use of Nearest Neighbor
Classification", Mech. Syst. Signal Processing, vol. 6, no. 4, pp. 297-
307, July, 1992.

ACKNOWLEDGEMENT

Partial support for this research from the Boeing
Company, the National Science Foundation, and from the
M.K. Finley Missouri endowment, is gratefully
acknowledged.

REFERENCES

[1] J.L. White, M.A. Heidari, M.H. Travis, "Experience in Rotor Balancing
of Large Commercial Jet Engines," SEM, Proceedings of the 13th Intl
Modal Analysis Conf., Vol II, 1995, pp. 1338-1344.

[2] X. Hu, J. Vian, J. Choi, D. Carlson, D.C. Wunsch II, "Propulsion
Vibration Analysis Using Neural Network Inverse Modeling," Neural

2346



Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, July 31 - August 4, 2005

Dynamic Neural Network-based Estimator for Fault
Diagnosis in Reaction Wheel Actuator of Satellite

Attitude Control System
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Abstract-This paper presents an approach to simultaneous
fault detection and isolation in the reaction wheel actuator of
the satellite attitude control system. A model-based adaptive
nonlinear parameter estimation technique is used based on a
highly accurate reaction wheel dynamical model while each
parameter is an indication of a specific type of fault in the
system. The estimation is based on the nonlinear finite-
memory filtering strategy that is solved for optimal estimation
functions. To make the optimization feasible for on-line
application, the optimal estimation functions are
approximated by MLP neural networks thus reducing the
functional optimization problem to a nonlinear programming
problem, namely, the optimization of the neural weights. The
well-known standard back-propagation algorithm and back-
propagation through-time algorithm were employed inside the
neural adaptation algorithms to obtain the required gradients.
Simulation results show the effectiveness of the methodology
for the proposed application.

I. INTRODUCTION

There is an increasing demand for man-made
dynamical systems to operate autonomously in presence of
faults and failures in sensors, actuators or components. These
requirements are of particular importance to systems such as
highly advanced satellites and space probes. As satellites
become more complex and autonomous, on-board diagnosis
functions and capabilities grows in importance. In the
literature a system that is capable of detecting, isolating,
recovering faults is known as an FDIR system. The FDIR
system should be capable of detecting and isolating various
types of faults including multiple faults that may happen at
the same time in different components or subsystems of a
satellite including the attitude determination and control
subsystem (ADCS). The ADCS subsystem stabilizes the
satellite and orients it in desired directions even in the
presence of external disturbances acting on it. The actuator
that is basically used in today's satellites for active attitude
alteration is the reaction wheel which produces and applies
corrective torques on the satellite's body. In this paper, we
will not address the fault recovery problem, therefore we
make the assumption that the control input u(t) and the state

S. Tafazoli
Canadian Space Agency
6756, route de l'Aeroport

Saint-Huber, Quebec, J3Y 8Y9 CANADA

vector x(t) remain bounded prior to and after the occurrence
of a fault.

As model-based fault diagnosis and isolation (FDI)
techniques are based upon the mathematical model of the
system, modeling uncertainties and process noise and
disturbances will affect the performance of the FDI unit
leading to missed and false alarms. Therefore, it is an
important requirement to have a highly accurate analytical
model of the reaction wheel dynamics and disturbances. This
is our motivation in section 2 where a detailed nonlinear
mathematical model of the reaction wheel in conjunction with
the attitude dynamics of the satellite is presented.

During the last two decades a number of works have
been developed using model-based analytical approaches to
FDIR. These techniques may be divided into three basic
approaches: observers [1], parameter estimation [3,4], and
parity equations [2]. Although the work presented in this
paper is different from the parameter estimation approach
proposed in [3,4], we conceptually follow the same general
idea. The difference basically originates from the manner we
define the parameters that need to be estimated. Here we
make use of the fact that sensor, actuator, or component faults
of a dynamic system can be reflected in a set of parameters
designated as fault parameters which affect the physical
parameters of the system in additive or multiplicative forms.
Faults are then detected by estimating these fault parameters
and comparing the estimates with the parameter values under
healthy conditions. It should be noted that in contrast in the
standard parameter estimation approaches the plant
parameters themselves have to also be estimated.

State and parameter estimation under the assumption of
linearized system dynamics and Gaussian process and
measurement noises can be accomplished optimally using
Kalman filter [6]. For nonlinear systems, however, it is well-
known that the nonlinear extension of the Kalman filter called
Extended Kalman Filter (EKF) suffers greatly from
divergence due to modeling errors and disturbances. To
overcome this drawback [7,8] originally proposed the finite-
memory estimation for nonlinear systems. Finite-memory
estimation is based on the idea that the data older than a given
number of time steps will not influence the current estimate.
Again under the linear-Gaussian assumptions, the analytical
solutions exist for the estimation laws while for nonlinear

0-7803-9048-2/05/$20.00 @2005 IEEE 2347



systems approximations are required. In [9] finite-memory
estimation has been applied to the problem of fault detection
in linear continuous-time systems. For the application of
finite-memory estimation to identification problems see [10].

Neural networks are basically an important class of on-
line approximators due to their on-line learning capabilities,
their universal approximation property, and the distributed
nature of their parameters (or weights). The use of neural
networks in fault diagnosis is basically based on their ability
to model nonlinear dynamic systems. In this regard, [5] have
presented the general fault diagnosis scheme as shown in fig.
1 where each fault model in the residual generation block is a
dynamic neural network that identifies a class of system
behavior. In the decision making stage another neural
network is used for the purpose of residual evaluation based
on the classification capability of neural networks. For a
detailed discussion on different network architectures and
algorithms that have been deployed in this general framework
see the survey paper of [5].

In this paper, we are not adopting the above general
architecture. Instead, the FDI problem will be formulated as
an on-line nonlinear parameter and state estimation problem
where the nonlinear functions in the solution of the estimation
problem will be approximated by using neural networks of
the MLP (Multi-Layer Perceptron) architecture. Whenever
needed, dynamics will be introduced to the MLP networks
using tapped delay line operator in the feedback loop.

II. REACTION WHEEL MODEL AND ATTITUDE DYNAMICS

Reaction wheels are moment exchange devices that provide
reaction torque to a satellite body and store angular
momentum used for the purpose of active and passive attitude
control, respectively. It consists of a rotating flywheel driven
by an internal brushless DC motor. The only input to the
reaction wheel is a torque command (voltage) which controls
motor current and consequently the motor torque. Based on
the Newton's third law of motion, the reaction torque applied
to the satellite body is equal to and opposite to the net torque
that accelerates and decelerates the flywheel. The detailed
mathematical model of the reaction wheel, in block diagram
form, is given in Fig. 2 which includes nonlinearities as well
as internal disturbances that are present in a real system
[11,12]. In this figure the gain K, is the motor torque
constant which delivers torque proportional to the current Im
which itself is directly proportional to the torque command
voltage, Gd is the gain of the motor driver which is
essentially a voltage controlled current source. A speed
limiter circuit is applied to keep the speed of the flywheel in
the safe range specified by the thresholdw,. A high-gain
negative feedback ks will be provided into the command
torque whenever the threshold is exceeded.

Fig. 1. General Fault Diagnosis Scheme with Neural Networks [5]

The increase of back-EMF, ke, of the motor at high speeds
may limit the motor torque specifically at low bus voltage
conditions. The back-EMF limiting is also mildly coupled to
power consumption through voltage drops in the input filter
due to the product of the bus current, 'BUS, and the input
filter resistance, RIN where IBUS is a highly nonlinear
function of the states, Im and w, and the bus voltage, VBUS .

In case no power is being drawn from the bus, for
instance during deceleration, the heavy-side function, Hb,
eliminates the voltage drop. In addition, a reverse polarity
protection diode drop of IV is also modeled by Hb. The
friction effect is mathematically broken down into viscous
friction, modeled by the speed and temperature dependent
factor rv, and coulomb friction, modeled by a constant, Tm,
with polarity dependence on wheel direction of rotation.
Torque noise, a very low frequency torque variation from the
bearings due to lubricant dynamics, is also modeled. The
torque motor in a reaction wheel can be a source of very high
frequency disturbances due to the motor excitation and the
magnetic construction which is modeled as cogging and
torque ripple frequency varying sinusoidal signals in a
feedback loop with frequencies depending on the number of
poles of the DC motor and the motor speed.

For the reasons that will be clarified later in section 4, we
approximate all the discontinuous blocks in the reaction
wheel model by continuous differentiable functions. These
functions represented by VI.1 W2' and yW3, are approximating
EMF torque limiting, coulomb friction, and speed limiter
subsystems, respectively. For notational simplicity torque
ripple and cogging are represented by (p, and qp2, respectively.
The closed-form nonlinear state-space representation of the
reaction wheel model may be expressed as follows:
[Im G Id/l(Im C) - 3(d Im 1LJG'dom
Ud j[&Im(I+B(ct))-rcW2(W)-w+c(Ct)I °

y=e=[O 1][@] (1)
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