3,454 research outputs found

    Continuum Theory of Polymer Crystallization

    Full text link
    We present a kinetic model of crystal growth of polymers of finite molecular weight. Experiments help to classify polymer crystallization broadly into two kinetic regimes. One is observed in melts or in high molar mass polymer solutions and is dominated by nucleation control with Gexp(1/TΔT)G \sim \exp(1/T \Delta T), where GG is the growth rate and ΔT\Delta T is the super-cooling. The other is observed in low molar mass solutions (as well as for small molecules) and is diffusion controlled with GΔTG \sim \Delta T, for small ΔT\Delta T. Our model unifies these two regimes in a single formalism. The model accounts for the accumulation of polymer chains near the growth front and invokes an entropic barrier theory to recover both limits of nucleation and diffusion control. The basic theory applies to both melts and solutions, and we numerically calculate the growth details of a single crystal in a dilute solution. The effects of molecular weight and concentration are also determined considering conventional polymer dynamics. Our theory shows that entropic considerations, in addition to the traditional energetic arguments, can capture general trends of a vast range of phenomenology. Unifying ideas on crystallization from small molecules and from flexible polymer chains emerge from our theory.Comment: 37 double-spaced pages including 8 figures, submitted to the Journal of Chemical Physic

    Measuring entanglement in condensed matter systems

    Full text link
    We show how entanglement may be quantified in spin and cold atom many-body systems using standard experimental techniques only. The scheme requires no assumptions on the state in the laboratory and a lower bound to the entanglement can be read off directly from the scattering cross section of Neutrons deflected from solid state samples or the time-of-flight distribution of cold atoms in optical lattices, respectively. This removes a major obstacle which so far has prevented the direct and quantitative experimental study of genuine quantum correlations in many-body systems: The need for a full characterization of the state to quantify the entanglement contained in it. Instead, the scheme presented here relies solely on global measurements that are routinely performed and is versatile enough to accommodate systems and measurements different from the ones we exemplify in this work.Comment: 6 pages, 2 figure

    Trapped ion chain as a neural network

    Full text link
    We demonstrate the possibility of realizing a neural network in a chain of trapped ions with induced long range interactions. Such models permit to store information distributed over the whole system. The storage capacity of such network, which depends on the phonon spectrum of the system, can be controlled by changing the external trapping potential and/or by applying longitudinal local magnetic fields. The system properties suggest the possibility of implementing robust distributed realizations of quantum logic.Comment: 4 pages, 3 figure

    On applying the set covering model to reseeding

    Get PDF
    The Functional BIST approach is a rather new BIST technique based on exploiting embedded system functionality to generate deterministic test patterns during BIST. The approach takes advantages of two well-known testing techniques, the arithmetic BIST approach and the reseeding method. The main contribution of the present paper consists in formulating the problem of an optimal reseeding computation as an instance of the set covering problem. The proposed approach guarantees high flexibility, is applicable to different functional modules, and, in general, provides a more efficient test set encoding then previous techniques. In addition, the approach shorts the computation time and allows to better exploiting the tradeoff between area overhead and global test length as well as to deal with larger circuits

    Noncontact modulation calorimetry of metallic liquids in low Earth orbit

    Get PDF
    Noncontact modulation calorimetry using electromagnetic heating and radiative heat loss under ultrahigh-vacuum conditions has been applied to levitated solid, liquid, and metastable liquid samples. This experiment requires a reduced gravity environment over an extended period of time and allows the measurement of several thermophysical properties, such as the enthalpy of fusion and crystallization, specific heat, total hemispherical emissivity, and effective thermal conductivity with high precision as a function of temperature. From the results on eutectic glass forming Zr-based alloys thermodynamic functions are obtained which describe the glass-forming ability of these alloys

    New Insights into Cosmic Ray induced Biosignature Chemistry in Earth-like Atmospheres

    Full text link
    With the recent discoveries of terrestrial planets around active M-dwarfs, destruction processes masking the possible presence of life are receiving increased attention in the exoplanet community. We investigate potential biosignatures of planets having Earth-like (N2_2-O2_2) atmospheres orbiting in the habitable zone of the M-dwarf star AD Leo. These are bombarded by high energetic particles which can create showers of secondary particles at the surface. We apply our cloud-free 1D climate-chemistry model to study the influence of key particle shower parameters and chemical efficiencies of NOx and HOx production from cosmic rays. We determine the effect of stellar radiation and cosmic rays upon atmospheric composition, temperature, and spectral appearance. Despite strong stratospheric O3_3 destruction by cosmic rays, smog O3_3 can significantly build up in the lower atmosphere of our modeled planet around AD Leo related to low stellar UVB. N2_2O abundances decrease with increasing flaring energies but a sink reaction for N2_2O with excited oxygen becomes weaker, stabilizing its abundance. CH4_4 is removed mainly by Cl in the upper atmosphere for strong flaring cases and not via hydroxyl as is otherwise usually the case. Cosmic rays weaken the role of CH4_4 in heating the middle atmosphere so that H2_2O absorption becomes more important. We additionally underline the importance of HNO3_3 as a possible marker for strong stellar particle showers. In a nutshell, uncertainty in NOx and HOx production from cosmic rays significantly influences biosignature abundances and spectral appearance.Comment: Manuscript version after addressing all referee comments. Published in Ap

    Modeling transcriptional networks in Drosophila development at multiple scales

    Get PDF
    Quantitative models of developmental processes can provide insights at multiple scales. Ultimately, models may be particularly informative for key questions about network level behavior during development such as how does the system respond to environmental perturbation, or operate reliably in different genetic backgrounds? The transcriptional networks that pattern the Drosophila embryo have been the subject of numerous quantitative experimental studies coupled to modeling frameworks in recent years. In this review, we describe three studies that consider these networks at different levels of molecular detail and therefore result in different types of insights. We also discuss other developmental transcriptional networks operating in Drosophila, with the goal of highlighting what additional insights they may provide
    corecore