We present a kinetic model of crystal growth of polymers of finite molecular
weight. Experiments help to classify polymer crystallization broadly into two
kinetic regimes. One is observed in melts or in high molar mass polymer
solutions and is dominated by nucleation control with G∼exp(1/TΔT), where G is the growth rate and ΔT is the super-cooling. The
other is observed in low molar mass solutions (as well as for small molecules)
and is diffusion controlled with G∼ΔT, for small ΔT. Our
model unifies these two regimes in a single formalism. The model accounts for
the accumulation of polymer chains near the growth front and invokes an
entropic barrier theory to recover both limits of nucleation and diffusion
control. The basic theory applies to both melts and solutions, and we
numerically calculate the growth details of a single crystal in a dilute
solution. The effects of molecular weight and concentration are also determined
considering conventional polymer dynamics. Our theory shows that entropic
considerations, in addition to the traditional energetic arguments, can capture
general trends of a vast range of phenomenology. Unifying ideas on
crystallization from small molecules and from flexible polymer chains emerge
from our theory.Comment: 37 double-spaced pages including 8 figures, submitted to the Journal
of Chemical Physic