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Output-maximal control policies for cascaded production-inventory 
systems with control and state constraints 

J. WARSCHATt and H. J. WUNDER LICHt 

Optimal control policies are derived for cascaded production·inventory systems. As 
objectives, output maximization and the minimum time to produce a fixed output 
arc considered. An example consisting of three subsys tems is detailed to illustrate the 
proposed theory. 

1. Introduction 
This paper is concerned with the optimal planning of prod ucti Oil over a fixed time 

horizon [0, T] for cascaded production-inventory systems as described by Bradshaw 
and Erol (1980). A subsystemj consists of a plant and of an inventory. The plant has 
an actual production rate Pj(t) which follows thc desired production rate p,,(I) with a 
first-order time delay with time constant IfC1. j • The actual inventory level i(t) is the 
balance of the actual production rate and the shipping rate Sj(t). Therefore, the 
subsystem j is govcrned by the differential equations: 

ij(l) ~ p,(t) - s,(t) 

Pj(l) ~ ",(PdJ(t) - Pj(t» 

(I) 

(2) 

In the following we consider a cascade of 111 subsystems (1) and (2) which are 
connected by 

SJ+ 1 (I) ~ Pdj(I), j ~ I, ... , 11/ (3) 

i.c. the output of a subsystem is equal to the input of the subsequent subsystem as 
shown in Fig. 1. 

Regarding the desired production rates PdAt) as control variables /tj(t) and the 
actual production rates pAt) and the inventory levels ij(t), as state variables x 2j(t) and 
X2j_ t(t).j= 1 ..... 111. we get the state equation 

.. <(t) ~ AX(I) + BU(I) ( 4) 

where 
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Figure 1. 

[n most cases the production rates have to remain within certain limits where we can 
sct 

(6) 

without loss of generality we assume {j = - I, ~j = + 1, and often the state variables 
arc restricted in a similar manner, for example the inventories may not violate a safety 
stock 

X'J_I(t)~Pj' VtE[O.7] (7) 

or the actual production rates cannot exceed a maximum rate 

(8) 

The objective is the output maximization of the system, i.c. the maximization of the 
inventory at time T of the last subsystem, which implies 51 (t) == 0: 

J(u) = -xl(T)-min (9) 

In a recent paper (Vvarschat and Wunderlich 1984) control policies were derived 
concerning the time-optimal state transition of system (4) with totally prescribed 
initial and end conditions (5). These policies were attained by application of a theory 
for state-constrained systems developed by Jacobscn et al. (1971). Hamilton (1972) 
and Maurer (1977). In this paper it is shown that output-maximal and time-minimal 
policies for a fixed output, where only the end conditions of the inventories are 
prescribed, can be found in a similar way. For demonstration, the problem is stated in 
a more general form; sec Jacobsen el al. (1971). Hamilton (1972) and Maurcr (1977). 
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2. Necessary conditions 
Determine a pieccwise continuous control u(t), t E [0, n, which minimizes the 

functional 

subject to 

J(II)'~ F(x(T)) 

-'(I) ~ l(x(/). II(/))'~ I. (X(/)) + 1,(x(/))II(/) 

x(O) ~ Xo. Q(x(T)) ~ 0 

u(t) E U ,= {u E !R.m l _ 1 ~ IIj < l,i= 1, ... , m} 

S,(x(t)) :;;; o. i ~ I •...• " 

( (0) 

(11) 

( (2) 

(13) 

(14) 

with the state vcctor x(t) E !R.", the control vector It( t) E !R.ffl, the functions F: IR" - R, 
11 : 1R"-IR",Iz:1R"_IR"xm, Q: IR"_IRII, k <n, S:!R."- Rh, /t:::;;m, which are assumed to 
be continuously differentiable for a sufficient number of times. 

Definition 
The interval 11= [t l , tz] c: [0, T] is called the boundary arc and tl and lz are 

called the ell try and the exit time, respectively, of the trajectory x(t) concerning Sj, 
if there exists a E> 0 with SI(X(t)) ¢ 0 for t I - £::::: t < tl and for tz < t ~ t2 + E; and 
S,(X(/)) ~ 0 for I E I. 

Now wc usc Maurer's form of the minimum principle. 

(MP) . For each optimal solution X(I). 11(1) of the problem (10)- (14) there exists an 
adjoined vector ).(/) E R" and a measurable function '1:[0. TJ -+ R' with 'IT(I)S(x(l)) ,,0. 
IE [0. TJ. fulfilling (15)-( (9): 

J.T ~ -).TI,.(x)_).TI,.(X)II-'ITSAx) 

).T(T) ~ F.(x(T)) + "TQ'(X(T)). "E R' 

Additionally. we assume here the Slater condition (see Girsanov 1972). 

(15) 

(16) 

).T(I+) ~ ).T(n _ vT(/)S.(X(/)). vi(/);;; o. i ~ I •...• " (17) 

where 

With the hamiltonian 

H(x(I). 11(1). ).(/). 'I(I)),~ ).T(/)/, (X(/)) + ).T(I)/,(x(I))II(/) 

+ 'IT(t)S(x(/)) 

we get the minimum principle 

H(x(/). 11(/). ).(/). 'I(t)) ~ min H(x(t).II. ).(1). '1(1)) 

(18) 

( (9) 

Because of the form of the hamiltonian which contains the control vector linearly, we 
define a switching function in order to determine u(t): 

4>T(/)'~ ).T(/)/,(X(/)) (20) 
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For each component tPJ(t) ;':: 0, the minimum principle (19) yields the bang-bang 
control: 

{

-I 
11 .(1) ~ 
) 1 

3. Output maximization 
3.1. Unconsrrained trajectories 

if </>;(t) > 0 

if </>;(1) < 0 

For case of notation, we transfer (4) without loss of generality into 

(21) 

j(l) ~ TAx(l) + TBII(I). IE [0. I] (22) 

To avoid any ambiguity we set the initial conditions to 

x(O) ~ 0 (23) 

For other values the modifications of the following arguments arc obvious. As final 
conditions, we assume fixed inventories and free production rates, i.c. 

x2j_d1)=aj. X2j(t) free, j=2, .... HI (24) 

For determined x 2j_,(I) and x 2i1). the theory developed by Warschat and 
\Vunderlich (1984) holds. Clearly the a) have to he restricted to ensure a solution oCthe 
problem. Therefore, we define in the following the admissible end conditions by 

aj+I>I_l-exp(-ToJ) (Tfi') mte T - Ta.j 
(25) 

which describe the open set of controllable output. For aJ ~ O. (25) is always fulfilled. 
The adjoined equation is 

(MP) yiclds 

).,(I)~ -I~'b, 

)'2j_,(I) ~b2)-" j~2 •...• 111 } 

)"J(I) ~ 0~,b2j' j ~ 1 • ...• 111 

Hence we get from (26) by integration 

)'2j-,(I)~b2J-" IE[O.I] 

(26) 

(27) 

(28) 

(29) 

b1j - 1 b1j - 1 )'2j(l) ~ - () cxp (To)l) + --. IE [0. I] (30) 
ex) cxp Taj 'Xj 

From (20) we get, with respect to (22), for each component: 

¢i=r.x/2J -J'2J +l> j = l ..... m-l} 
rpm - C'lln J'2m 

(31) 

Taking (29) and (30) into consideration~ the switching functions may be constant or 
may have at most one switching point. Singular controls occur if ~J = 0, which implies 
b2j - 1 = 0 and b2J + I = O. Therefore "l must be a bang- bang control. 
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Lemma 
All u), j = I, ... , 1/1 are bang-bang controls. 

The proof runs by contradiction. Lctr~: 2 be the smallest integer with a singular 
II). Consequently, <Pi;::::;;: 0 holds and therefore we have b2i - 1 = 0, <Pj-I = CC2j-l )'2j-1 

and <P i-I (I) = 0. The function cp)_ I is monotonous. Therefore the bang- bang control 
IIj_1 has no switching point and 11) - 1 = I or IIj_1 == - I must hold. Integrating (22) 
with respect to (23) we get 

X,j(l) = T.jexp ( - TaJI) I IIJ(t) exp (T.jt) dt (32) 

and 

aJ = X'J- I (I) = T( L (Taj exp ( - T.J') I IIJ(t) exp (Tajt) dt) dl-lIj _l) (33) 

\Vith Fubini's theorem, (33) can be transformed to 

a;lT + "j_1 = f.' lI;(t) exp (T.jt) T.j r exp (- T.JI) dt dt 

= f.' IIj(t) exp (Tajt)(exp (- T.Jt) - exp( - Ta j )) cit 

= f.' IIj(t)( I - e;p ( - T.J) exp (TaJt)) dt 

The function (I - exp (- TaJ) exp (Ta)t)) is non.negative on [0, I]. Thus there exists 
apE [ -I, I] with 

L 1I)(t)(l-exp ( - T.) exp (T.jt)) clr=p f.' (I -exp( - Ta) exp(Ta)t)) cit 

Evaluating the integrals we obtain 

But 111)-.1 = I yields 

This contradicts (25). 

a;lT+llj_ 1 =p(I _ I-exi~j-T.j») 

1_ I-exp ( - T. j ) 

Tccj 

;;; I _ I - exp ( - T.;) 
Tcc) 

It only remains to determine the switching point t j for each II). Dealing with output 
maximization it will be obvious to start with positive controls, Otherwise, the 
modifications in the subsequent rc1ations are straightforward. Let j = 2, .... m. then 

C1j= T S: IIj(t)(l-exp( - T.j) exp(T.jt» clr - T SOl IIj-l(t) clr 

( 
2 exp ( - Taj) exp (Ta;fj) - I - exp (- Taj») T = T 2Ij - l- -2Tlj_ 1 + 

Ta j 
(34) 
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From 4>m{ 1) = 1X2m )'2m( 1) = 0 we get em = 1. So we can determine the I j.j = //I - I, ...• 1, 
recursively from (34); 

( 
2 exp (- Ta.j+ d exp (TIXJ+ 1 Cj+d - I -exp (- Taj+d llJ+l)! 

tj = 2tJ+ 1 - 7i. - - T 2 
Ct.J+ 1 

Then the optimal controls solving our problem become __ {I, O;;;I;;;IJ 1/.(1)= 
J _ 1, otherwise 

(35) 

(36) 

Note: If the final condition for an inventoTY is free, i.e. one of the a;,j = 1, ,." m, for 
example ak> is not defined, the respective control II" is singular and can be chosen as a 
suitable constant. Then it follows from the previous discussion that UA.-l == I. 

3.2. Constrained trajectories 
Now the trajectories have to satisfy additionally the slate constraints (7) or (8) 

which leads, using (14), to 

{ 
X,j(t) - flu } S;(X(I)) ,= ,; 0, j = I, ___ , II 

/12i+ 1 - X2J+ 1 (I) 

(37) 

(38) 

The first derivative of (37) is 

S,(X(I)) = x,il) = - .jx2j(t) + .Jllj(t) = 0 

so we get the boundary control !lA') = X2j(l) = fJ2j. Analogously, we obtain the 
boundary control for (38); IIj(t) = X,j+,(t). 

For both constraints the first derivative of S,(x(t)) contains lI(t) explicitly. Maurer 
(1977) has shown that in this case the adjoined vector is continuous at entry and exit 
points. Therefore, the basic considerations of the previous section remain valid, but in 
addition we have to determine the entry and the exit points concerning the boundary 
controls. 

In the following we obtain the unknown control functions uAt),j=lllt ••• , 1 by a 
recursive computation of the corresponding switching points tJ and tJ. Thereby we do 
not deal with cases where both x 2j+ 1 and X2j arc restricted, because this would not 
change the arguments but would cause more effort in notation. 

(I)j = m_ 
(a) If X 2111 is not restricted, set IIm(t) = t. 
(b) There is a boundary X2j (l) - {J,j;;; O. 

If we se t x'i(t~) = {J'i we get with (32) 

I I = __ I n--,(-;1 ;;-,P..o'L'-j) 
III Ta j 

Thus the control is 

11.(1) = 

(2)j~I - I,I=2, .. _,m. 

{
I, 

P2}. 
o ~ 1 ~ l~ 

t~ < t < I 

(39) 

(40) 
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(a) For an unconstrained subsystem j. the switching poir:at is dc~crmincd by 
(34): 

f.
1 . f.1 

a1~T 0 u1(t)(I-exp(-Tadexp(T. 1tlldt - T 0 u)(t)dt 

I) ~ (I u1(t)(l-exp(-T.dexp(T.1tlldr-a1IT+ 1)/2 
The control is 

(b) x,}- p,} S O. 

{
I, 0-01:<;;1) 

u.(r)~ 
} -1. tJ<t~l 

We compute I) as in (1 (b)), then we proceed as in (2 (a)): 

a1 ~ T(f.1 U1 (t)(1 - exp (- T.d exp (Tal t)) dr - T(t) + p,)(t] - t)) - (1 - tm 

(41) 

(42) 

t] ~ (I U1 (t)(1 - exp (- Tad exp (Tal t)) dr -c aliT + rj(p,) - 1) + 1) /(P,) + 1) 

(43) 

As control we get: 

1, o <t < tJ 
u)(t) ~ P2j. t!<t<t~

J = = J (44) 

-1, tj < t ~ t 

(~) P2J+l.~X2J+l~O . 
The entry point is computed by integrating the trajectory until tJ: 

P')+l ~ T L) (exp (- Tal t)Ta l t U1(t) exp (Tal r) dr - uit)) dt 

~TL) u1(t)(l-exp(-Ta1t))exp(Ta1t))dr-Tr) (45) 

Th~ exit point Jjis obtained by: . 

a1 ~ x,)+ 1(1) ~ p,)+ 1 + T t (x,,(t) + I) dt (46) 

The control becomes: 

1, O:<;;t<tJ 

u)(t) ~ X21(t), tJ & r & r] 

-I, rf <r & 1 

This completes the recursion. 

(47) 
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4. Time-minimization for fixed oulput 
In order to supply the representation of the previous sections we consider another 

objective function 

J(II) = T _ min 

where the output of the last subsystem is fixed 

x,(I)=a 

(48) 

(49) 

The othe"r relations remain valid. In a sense this is the 'inverse' planning problem to 
(9). 

For each T>O,let arT) denote the maximal output x,(I)=a(T) of the system 
(22). Then T, > T, yields arT,) > a(T,).lfthere exists aT> 0 with a = arT), then Tis 
the minimal time to produce a. For each T> O,let IIJ be determined as in (36) or in 
(40), (42), (44), (47), respectively. We define 

d(T),=a-X,(I)=a-Tf.' uf(r)(l-exp(-Ta,)exp(Ta,r))dr (50) 

Now it suffices to look for a zero d(T) = 0 of the real function (50). So we get the 
minimal time T and the corresponding optimal control ItJ. 

5. Numerical example 
In order to illustrate the ideas of the p'revious sections we consider a production

inventory system consisting of three subsystems. The constants of the time delays are 
Cl 1 = 0'8, Cl2 = 0"9, !X3 = 1'0. The optimal control policies and the respective state 
variables for the output maximization are shown in the left-hand side of Fig. 2. No 
constraint is active. The interval T is chosen as l. For simplicity, all state variables 
start with 0 as initial value. Because of the impossibility of negative inventories, this 
means that one has to provide safety stocks of at least the maximal amount of 
X'J-,(I),j= 1,2,3. 

Subsystem three which lies on the input side of the system works over the whole 
interval with maximal Ut (t) (t l = 1·0). This is possible if we assume that there is always 
enough input available. Subsystems one and two are bang-bang controlled with 
switching times I, = 0·6293 and I, = 0,6839, respectively. The output of the system is 
x,(I) = 0·21l9. Now we impose a constraint on the inventory x,(t) (see case (2 (b))) 
S;= 0'25 - x 5 (t) ;;;;- O. This can be interpreted as too small a safety stock of system 
three. This system works with maximal production rate (tJ = 1·0) but, due to the 
constraint, the control policy 1I,(t) has to follow exactly the production rate x.(t) in 
the interval [11. In with 11 = 0·2877 and Ij = 0'8439, since the output of X,(I) can be 
at most equal to the input. 

6. Conclusion 
In this paper we consider cascaded produetion.inventory systems. We present 

optimal control policies for the problems of output maximization and of time-optimal 
production of a fixed output where the control variables are bounded. It is shown that 
all subsystems are bang-bang controlled. Then we regard the state-constrained case 
where we distinguish inventory and production rate constraints. For both problems 
we get the optimal control policies and the respective optimal trajectories with the 
entry and exit times at the bounded arcs. 
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