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Quantitative models of developmental processes can provide

insights at multiple scales. Ultimately, models may be

particularly informative for key questions about network level

behavior during development such as how does the system

respond to environmental perturbation, or operate reliably in

different genetic backgrounds? The transcriptional networks

that pattern the Drosophila embryo have been the subject of

numerous quantitative experimental studies coupled to

modeling frameworks in recent years. In this review, we

describe three studies that consider these networks at different

levels of molecular detail and therefore result in different types

of insights. We also discuss other developmental

transcriptional networks operating in Drosophila, with the goal

of highlighting what additional insights they may provide.
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Developmental transcriptional regulatory
networks
Development is both robust, producing reliable outputs

in the face of genetic variation and environmental per-

turbation within species, and plastic, producing new

outputs when parameters of the developmental program

are altered between species [1]. Quantitative approaches

at multiple scales, from the molecular to the circuit and

network, promise a route to understanding how develop-

mental networks achieve robustness under some circum-

stances and plasticity under others [2]. Success in

understanding these properties holds great promise for

medicine, as it could pinpoint the origins of develop-

mental defects and guide the design of new diagnostics

and therapies. Success will also inform fundamental ques-

tions about evolution, as we seek to understand when
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altering the parameters of a developmental program leads

to new phenotypes and when the phenotypic variation is

simply suppressed.

Different developmental programs use conserved

processes, such as cellular division, differentiation

and migration, to produce organisms with unique

morphologies, physiologies, and behaviors. To control

these processes, developmental programs make use of

gene regulatory networks that consist of multiple com-

ponents: signaling pathways to detect and relay infor-

mation, transcriptional networks to produce different sets

of RNAs and proteins, and the effectors that execute the

various processes involved in differentiation. Here we

focus on the transcriptional component of these networks,

or transcriptional regulatory networks (TRNs). Droso-

phila embryonic development has a been a favorite model

for systems-level studies of TRNs, owing to a variety of

technical advantages and a strong conceptual foundation

provided by decades of traditional molecular genetic

study. In this review, we discuss three studies of TRNs

that pattern the Drosophila embryo to illustrate how

different data types can inform biological questions at

different scales of resolution and how they can be inte-

grated into explanatory or predictive computational fra-

meworks. We then discuss selected TRNs in Drosophila

that operate during other stages of development, the

features we believe make them also amenable to model-

ing, and the technical advances that will enable more

quantitative experimentation on TRNs.

Early development in Drosophila
Patterning of the Drosophila embryo begins with mater-

nally provided cues that are transformed into concen-

tration gradients of transcription factors that control the

expression of downstream target genes along both the

anterior/posterior and dorsal/ventral axes [3,4]. The tar-

gets for these TRNs include both regulatory and struc-

tural proteins that collaborate to define the position and

identity of larval segments and to control the differen-

tiation of the germ layers [5].

These TRNs operate in a highly dynamic environment.

Zygotic transcription begins 2 h after fertilization, when

the embryo contains approximately 2000 nuclei. During

the next forty minutes, three further rounds of nuclear

division take place and the cells migrate to the periphery,

leading to a syncytial blastoderm embryo with approxi-

mately 6000 nuclei arranged in a monolayer at the surface.

At the end of an hour-long interphase, during which cell
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membranes invaginate to form the cellular blastoderm,

the basic body plan is established and the embryo begins

gastrulation [6]. During the next several hours of de-

velopment, the gene expression patterns laid down before

gastrulation are used to specify segmental identity, the

three germ layers, and cell types within these tissues [7].

This patterning continues even as the cells in the embryo

undergo complex movements to create the larval form [8].

Modeling of TRNs in the Drosophila embryo has been

facilitated by a long history of genetic and molecular

biology experiments. A majority of the key TFs involved

in both anterior/posterior and dorsal/ventral axis specifi-

cation were identified in pioneering genetic screens

[9,10]. These TFs are also used in many other TRNs

active at other stages and have been extensively charac-

terized by decades of experimental work; in many cases,

we know their DNA binding preferences [11], the cis-
regulatory elements where they act [12], their spatial and

temporal expression patterns, the effect of their disrup-

tion, and their roles in different TRNs. More recently,

genomic analyses, such as ChIP-chip and ChIP-seq,

have measured the in vivo binding of many TFs and

sites of chromatin modification during several stages of
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embryonic development [13–16], facilitating the identi-

fication of cis-regulatory elements, elaboration of TRN

topology and refinement of TF DNA binding prefer-

ences. Furthermore, microarrays and RNA-seq exper-

iments have been used to measure the output of

TRNs: the abundance and dynamics of mRNA transcripts

in embryos at multiple stages [5,14,17��,18]. Spatial and

temporal expression patterns have also been measured

systematically at low-resolution for many genes across

several developmental stages [19], and at high-resolution

for fewer genes during cellularization of the blastoderm

[20].

Quantitative studies of early Drosophila
development
Below, we discuss three recent examples of quantitative

studies of TRNs operating in the Drosophila early

embryo (Figure 1). These are not the only informative

studies we could have chosen; there is an extensive

literature on modeling the anterior/posterior and dorsal/

ventral patterning networks operating in the blastoderm

[21,22]. The three studies we chose interrogate TRNs at

different scales and therefore provide a good illustration

of how the goals of the analysis dictate the type of input
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 illustrate three examples of models of TRNs in the Drosophila embryo at

icoid gradient, Little et al. [23��] measured the absolute levels of mRNA

it level, we modeled the control of the hunchback posterior stripe CRE by

 the relative mRNA expression levels of the 5 TF inputs and hunchback

nzen et al. studied the specification of mesoderm in the embryo using a

5 TFs and combined this with tissue level expression patterns driven by

inding profiles.
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data and the nature of the computational framework used

in the study.

The use of morphogen gradients to dictate target gene

expression in a concentration-dependent manner is a key

concept in development. The anterior/posterior TRN

begins with bicoid, a classic example of a morphogen

gradient. The long-standing model for Bicoid gradient

formation suggests that Bicoid protein diffuses from a

point source of bicoid mRNA laid down by the mother in

the egg and tethered to the anterior end of the embryo.

Little et al. tested this mechanism by carefully measuring

bicoid mRNA and protein distributions using fluorescent

in situ hybridization (FISH), GFP tagged proteins, and

sophisticated image processing software [23��]. Using a

model of the synthesis, diffusion, and degradation of

bicoid mRNA and protein, they showed that the actual

distribution of mRNA, which is dispersed over the

anterior 20% of the embryo, better explains the observed

protein gradient than the previously assumed point

source of mRNA. This finding has significant implications

for how the gradient is constructed. Moreover, egg size is

known to vary significantly both within and between

Drosophila species [[24–28], Fowlkes et al. PLoS Genetics,
in press], and this model of Bicoid gradient formation

impacts our understanding of how the gradient will scale

in embryos of different shapes and sizes.

Transcription factor binding sites are crucial for control-

ling expression of their target genes, but it is not known

how they integrate information to produce specific gene

expression patterns [22,29]. Changes in single sites can

disrupt regulatory output, but it is currently difficult to

predict which disruptions are likely to have an effect or

what the effect will be. Part of the difficulty is that

multiple configurations of sites are functional; evolution-

ary comparisons indicate that the positions and affinity of

TF binding sites change quite rapidly over evolutionary

time while gene expression output is conserved [30–32].

To understand how the arrangement of TF binding sites

relates to their functional output, we analyzed the TRN

controlling the zygotic expression of the gene hunchback,

a transcription  factor that is, partly, regulated by bicoid
[Wunderlich et al., submitted]. Using a quantitative in
situ hybridization pipeline [20], we measured the relative

mRNA levels controlled by a hunchback cis-regulatory

element (CRE) and its five regulators at cellular resol-

ution. This allowed us to model the relationship between

TF mRNA concentrations (inputs) and mRNA expres-

sion directed by the hunchback CRE (output) in individ-

ual cells. We first measured both input levels and output

levels in transgenic D. melanogaster lines that express a

reporter under the control of the hunchback zygotic CRE

from six different Drosophila species. We then measured

the inputs and outputs in the endogenous settings of

three Drosophilids [[20], Fowlkes et al. PLoS Genetics, in

press]. Using these data, we fit a simple linear function
www.sciencedirect.com 
connecting the inputs to the output of one CRE and used

this function to predict expression for orthologous CREs,

with and without a calculated value for the cis-regulatory

contributions to output. We found that predicted TF

binding site occupancy summed across the CRE is an

effective measure of relative cis-regulatory function.

This is surprising given that the calculation does not

account for cooperative or mutually exclusive TF bind-

ing. This is likely because orthologous CREs have been

selected for functional TF binding site arrangements,

allowing a simple measure of overall site strength to

capture functional differences between sequences. This

result underscores the flexibility of CRE sequences with

respect to TF binding strength and arrangement, which

is known to vary between individuals and species

[33,34].

Often a single TRN with a small number of TFs can

specify several different cell types. Zinzen et al. used

ChIP-chip binding data and tissue-level CRE activity

data to investigate how a TRN specifies several different

mesodermal cell types [35��]. They measured the gen-

ome-wide binding of five TFs involved in mesodermal

specification and differentiation at several time points

over ten hours of development, beginning before gastru-

lation. Though there are other TFs that also contribute to

this process, the study was limited to the five TFs

essential for mesodermal specification and differen-

tiation. The goal of the study was to predict the expres-

sion patterns driven by candidate CREs identified by

ChIP-chip. The strategy used was to make a statistical

model that correlates ChIP-chip binding patterns with

tissue-level expression patterns. They built this model by

training on ChIP-chip data and previously measured

expression patterns driven by �300 CREs. The resulting

statistical model was used to predict the expression

patterns driven by 8008 candidate CREs, and a subset

of these predictions was then tested with a high degree of

success. This study shows that the binding patterns of a

small number of TFs to CREs are sufficient to predict

their spatio-temporal activity and emphasizes the

capacity of different TF binding patterns to yield the

same expression output. It also provides a way to predict

the functional consequences of changes in TF binding,

which is observed even over short evolutionary timescales

[36]. This approach may also be effective for prediction at

finer scales of resolution, by making use of binding data

for more TFs and annotations of CRE activity at cellular

resolution.

The examples above illustrate that a systems approach to

investigating TRNs can address biological problems at

multiple scales, from a physical model of gradient for-

mation at the molecular level, to rules for CRE architec-

ture at the binding site level, to a statistical model for

predicting the tissue-level expression of new CREs. The

three studies contend with an increasing number of
Current Opinion in Genetics & Development 2011, 21:711–718
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Table 1

Properties of Drosophila transcriptional regulatory networks

Name Parts Cell types Precision Dimensionality

of tissue

Time scale Repeating structures Other notable

features

eggshell patterning:

the specification of

dorsal appendage

location [41��]

TFs: br, brk, pnt

Signaling: DPP,

EGFR

Dorsal, midline,

anterior, roof, and

floor cell types

Tissue consists of

�1000 cells; there

are several cells per

cell type.

2D Duration: �20 h

Stage: Oogenesis

stages 9-12

N/A One of the best

examples of the

integration of

signaling and

transcriptional

networks

cardiac specification:

the specification of cardiac

mesoderm from mesoderm

[42�,43,44]

TFs: bin, Doc1,

Doc2, Doc3, H15,

Hand, mid, pnr, slp1,

slp2, tin, tup, ush

Signaling: DPP, Wg

N/A Each cluster consists

of tens of cells.

3D Duration: �2 h

Stage:

Embryonic stages

6–10

There are 10 paired

clusters of

cardiogenic cells.

Cardiac mesoderm

specification

happens during late

gastrulation.

central nervous system

patterning: starts with

the creation of cell

clusters in each

hemisegment, continues

to neuroblast formation,

ends with neuroblast

divisions and specification

of ganglion mother cells

(GMCs) [45,46,47��]

TFs: abdA, abdB,

ase, cas, D, dm, dpn,

Dr, eve, ftz, hb, ind,

jumu, Kr, l(1)sc, lbe,

nub, nvy, pdm2,

pros, run, toy, Ubx,

vnd, wor, and others

Signaling: Notch, TK

and others

30 types of

neuroblasts that

divide to form

ganglion mother

cells (GMCs), which

make different kinds

of neurons and glia

There are exactly 30

neuroblasts per

hemisegment; each

divides in a

stereotyped way.

3D Neuroblast

formation:

Duration: �4 h

Stage:

Embryonic stages

8-11

Whole CNS

formation:

Duration: �24 h

Each hemisegment

has 30 neuroblasts

that form in a

reproducible pattern.

Neuroblasts divide

asymmetrically, and

GMCs move towards

the dorsal side of the

embryo after

division. The pros TF

is localized in a cell

cycle specific way in

the neuroblasts.

Lineage and birth

order are important

for neuroblast

specification.

larval muscle development:

from cell differentiation in

promuscular groups to

fiber formation [48,49��]

TFs: ap, abd-A,

Antp, crl, eve, Kr, lad,

Mad, Mef2, nau, pan,

pnt, scr, slou, tin, twi,

Ubx

Signaling: DPP,

Notch, Ras, Wg

Founder cells (which

can be divided into

�30 subtypes based

on TF expression

profiles), fusion

competent

myoblasts

Each fiber starts with

a single founder cell

that fuses with

several fusion-

competent

myoblasts.

3D Duration: �11 h

Stage:

Embryonic stages

10-16

Each hemisegment

has �30 somatic

muscle fibers, each

of which originates

from a single founder

myoblast.

6 of the segments

(A2-7) have a

repeating muscle

pattern.

Asymmetric

divisions form

progenitor cells. Hox

genes specify

segment identity.

cardiac morphogenesis:

the transformation of

cardiac mesoderm into

the embryonic dorsal

vessel [42,43]

TFs: abd-A, Abd-B,

Antp, dl, eve, Mef2,

pnr, tin, Ubx, and

others

Signaling: DPP, Hh,

MAPK, Notch, RTK,

Slit/Robo, Wg

3 major cell types:

dorsal body wall

muscles, cardial

cells (also

differentiated into

ostium and non-

ostium cells),

pericardial cells

Each cluster of

cardiogenic cells has

�6 pairs of

cardioblasts, 4 pairs

express tin, 2 pairs

express svp, Doc1,

Doc2, and Doc3.

3D Duration: �15 h

Stage:

Embryonic stages

10-17

There are 10 paired

clusters of cells. Of

these, the 3 most

posterior sections

form the embryonic/

larval heart, which

contains ostia (inflow

tracts), and the 4

next most posterior

form ostia in the

adult heart.

Lineage is important

for dorsal body wall

muscle and

pericardial cell

specification; lateral

inhibition also plays a

role for dorsal wall

body muscles.
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Table 1 (Continued )

Name Parts Cell types Precision Dimensionality

of tissue

Time scale Repeating structures Other notable

features

bristle (macrochaete)

formation: from the

formation of proneural

clusters to division of

the sensory organ

precursor cell (SOP)

[50,51]

TFs: ac, ap, ase, B-

H1, B-H2, chn, da,

E(spl)-C, emc, h, iro-

C genes (ara caup

mirr), l(1)sc, pnr,

pros, salm, salr, sc,

ush

Signaling: DPP,

EGFR, Notch, Wg

Proneural clusters

give rise to 2

macrochaete. One

cell in each cluster

becomes the SOP

that divides twice to

form 4 cell types.

Proneural clusters

arise in steorotyped

positions in the fly;

each cluster

contains 20-30 cells.

There is exactly 1

SOP cell per cluster.

3D Duration: �2

days

Stage: Third

instar larva

Proneural clusters

are used to make as

many as 11 pairs of

macrochaete.

Lateral inhibition

helps ensure that

there is only one

sensory organ

precursor cell per

proneural cluster.

wing disc patterning:

from the definition of

the wing field to the

establishment of the

wing primordium [52]

TFs: ap, brk, dve, en,

fj, hth, iro-C genes

(ara, caup, mirr), nab,

nub, rn, sd, tsh, vg,,

many others

identified

Signaling: EGFR,

DPP, Hh, Hippo,

Notch, Wg

Tissues: notum,

tegula, hinge

(proximal,

intermediate, distal),

blade, margin

There is a population

of cells in each tissue

type, and there are

roughly 75,000 cells

total in the wing disc

at the end of the third

larval instar stage.

The 3D wing is

patterned from

a 2D imaginal

disc.

Duration: �2

days

Stage: Third

instar larva

N/A Wing disc patterning

is concurrent with a

large number of cell

divisions.

retina: creation of

the �800 ommatidia

that make up the

compound eye

[53�,54,55]

TFs: dac, ey, eya,

eyg, hth, Optix, so,

toe, toy, tsh, and

others

Signaling: DPP,

EGFR, Hh, Notch,

Wg

There are 4 major cell

types: lens secreting

cone,

photoreceptor,

pigment and bristle

cells.

Each ommatidium

has exactly 20 cells:

4 lens cells, 8

photoreceptor cells,

6 pigment cells, and

2 bristle cells

There is a 2D

field of

ommatidia and

a 3D

ommatidium

structure.

Duration: �2

days

Stage: Pupa

The retina is

composed of �800

ommatidia with three

different subtypes,

depending on

photoreceptor type.

The ommatidia form

as a wave, with the

posterior ommatidia

forming first and the

anterior last, allowing

ommatidia in various

stages of

development to be

observed

simultaneously.

We summarize characteristics of other developmental TRNs amenable to quantitative modeling approaches. However, it is important to note that each of these TRNs is described by an extensive

literature, and our summary is likely not comprehensive. We have listed references for each of them which can provide more detail.
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components, from a single TF, to a handful of TFs

controlling a single CRE, to a handful of TFs controlling

many CREs. They also occur at increasingly later devel-

opmental time points, as the embryo itself becomes more

complex. The computational frameworks needed to

answer the questions that are posed in these studies

require data of different breadths and resolutions. Nota-

bly, the data sets used in each study decrease in spatial

and temporal resolution as they increase in the number of

components, from single particle resolution at �8 min

intervals, to cellular resolution at �10 min intervals, to

tissue and embryo resolution data at �2 h intervals; yet

they are all successful in providing a satisfying answer to

the questions they pose. These differences in data type

emphasize that only the appropriate amount of detail

should be included in an effective computational frame-

work. Though not addressed directly in each study, the

results also provide a computational framework that can

be used to contextualize morphological or genetic varia-

bility within and between species.

Multiple developmental TRNs are amenable to
quantitative analysis
Comparing insights from studies of different TRNs may

shed light on how they are designed to accommodate

different timescales, tissue types and output require-

ments. Many other TRNs have attractive features for

systems-level studies, summarized in Table 1. The

relevant players for these TRNs are largely known

(Parts). Many of them give rise to a discrete number of

morphologically distinct cell types, which may facilitate

quantitating network output (Cell types). Some TRNs

produce structures precisely, while the output of others is

more variable (Precision). Many TRNs pattern relatively

simple tissue structures, such as 2D sheets, making them

relatively easy to image and analyze using image proces-

sing (Dimensionality of tissue). These different TRNs

process inputs and produce outputs over a range of time-

scales, from hours, such as in early Drosophila develop-

ment, to days, such as in eye formation (Time scale).

Finally, many TRNs produce repeating structures, which

can be useful for getting good statistical power out of a

single sample (Repeating structures). Comparing across

studies that interrogate at the same level of resolution

may be particularly fruitful, as the modeling frameworks

will probably be more similar than those employed at

different levels [22].

Outlook
Often whole embryo measurement of the inputs and

outputs of TRNs is sufficient to address questions at

the tissue level, making genomic technologies such as

ChIP-seq and RNA-seq informative. However, for stu-

dies at the molecular and circuit level, there is currently a

trade-off between obtaining highly spatially and

temporally resolved information for few components,

which is achievable using imaging, and obtaining lower
Current Opinion in Genetics & Development 2011, 21:711–718 
resolution data comprehensively using genomic technol-

ogies. To study the behavior of many TRNs, we do not

require comprehensive information on every component

in the cell – only information on a few tens of relevant

regulators. Unfortunately, this is still beyond the reach of

most imaging technologies, as only a handful of molecules

can be labeled simultaneously in fixed tissue, and even

fewer can labeled in live tissue [37–39]. An alternative

solution is to increase the spatial and temporal specificity

of biochemical techniques, such as ChIP-seq and RNA-

seq, which could be achieved by lowering amount of

material necessary and increasing the ability to purify

specific cell types [40]. Together, the vast amount of

information known about developmental TRNs and

technical advances in quantitative experimentation make

Drosophila an ideal choice to model TRN behavior, and

address some of the most exciting questions about how

development accomplishes the monumental task of creat-

ing an adult organism from a single cell.
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