177 research outputs found

    A prototype for SONTRAC, a scintillating plastic fiber tracking detector for neutron imaging and spectroscopy

    Get PDF
    We report on tests of a prototype detector system designed to perform imaging and spectroscopy on 20 to 250 MeV neutrons. Although developed for the study of high-energy solar flare processes, the detection techniques employed for SONTRAC, the SOlar Neutron TRACking experiment, can be applied to measurements in a variety of disciplines including atmospheric physics, radiation therapy and nuclear materials monitoring. The SONTRAC instrument measures the energy and direction ofneutrons by detecting double neutron-proton scatters and recording images of the ionization tracks of the recoil protons in a densely packed bundle of scintillating plastic fibers stacked in orthogonal layers. By tracking the recoil protons from individual neutrons, the kinematics of the scatter are determined. This directional information results in a high signal to noise measurement. SONTRAC is also capable of detecting and measuring high-energy gamma rays \u3e20 MeV as a “solid-state spark chamber”. The self-triggering and track imaging features of a prototype for tracking in two dimensions are demonstrated in calibrations with cosmic-ray muons, 14 to ~65 MeV neutrons and ~20 MeV protons

    Testing Lorentz Invariance with GRB021206

    Full text link
    Since the discovery of the cosmological origin of GRBs there has been growing interest in using these transient events to probe the quantum gravity energy scale in the range 10^16--10^19 GeV, up to the Planck mass scale. This energy scale can manifest itself through a measurable modification in the electromagnetic radiation dispersion relation for high energy photons originating from cosmological distances. We have used data from the gamma-ray burst (GRB) of 6 December 2002 (GRB021206) to place an upper bound on the energy dispersion of the speed of light. The limit on the first-order quantum gravity effects derived from this single GRB indicate that the energy scale is in excess of 1.8x10^17 GeV. We discuss a program to further constrain the energy scale by systematically studying such GRBs.Comment: 10 pages, 3 figures, accepted for publication in ApJ

    Electrical coupling of neuro-ommatidial photoreceptor cells in the blowfly

    Get PDF
    A new method of microstimulation of the blowfly eye using corneal neutralization was applied to the 6 peripheral photoreceptor cells (R1-R6) connected to one neuro-ommatidium (and thus looking into the same direction), whilst the receptor potential of a dark-adapted photoreceptor cell was recorded by means of an intracellular microelectrode. Stimulation of the photoreceptor cells not impaled elicited responses in the recorded cell of about 20% of the response elicited when stimulating the recorded cell. This is probably caused by gap junctions recently found between the axon terminals of these cells. Stimulation of all 6 cells together yielded responses that were larger and longer than those obtained with stimulation of just the recorded cell, and intensity-response curves that deviated more strongly from linearity. Evidence is presented that the resistance of the axon terminal of the photoreceptor cells quickly drops in response to a light flash, depending on the light intensity. Incorporating the cable properties of the cell body and the axon, the resistance of the gap junctions, and the (adapting) terminal resistance, a theoretical model is presented that explains the measurements well. Finally, it is argued that the gap junctions between the photoreceptor cells may effectively uncouple the synaptic responses of the cells by counteracting the influence of field potentials.

    SPI/INTEGRAL observation of the Cygnus region

    Full text link
    We present the analysis of the first observations of the Cygnus region by the SPI spectrometer onboard the Integral Gamma Ray Observatory, encompassing {\sim} 600 ks of data. Three sources namely Cyg X-1, Cyg X-3 and EXO 2030+375 were clearly detected. Our data illustrate the temporal variability of Cyg X-1 in the energy range from 20 keV to 300 keV. The spectral analysis shows a remarkable stability of the Cyg X-1 spectra when averaged over one day timescale. The other goal of these observations is SPI inflight calibration and performance verification. The latest objective has been achieved as demonstrated by the results presented in this paper.Comment: 6 pages, 10 figures, accepted for publication in A&A (special INTEGRAL volume

    SPI observations of the diffuse 60Fe emission in the Galaxy

    Full text link
    Gamma-ray line emission from radioactive decay of 60Fe provides constraints on nucleosynthesis in massive stars and supernovae. The spectrometer SPI on board INTEGRAL has accumulated nearly three years of data on gamma-ray emission from the Galactic plane. We have analyzed these data with suitable instrumental-background models and sky distributions to produce high-resolution spectra of Galactic emission. We detect the gamma-ray lines from 60Fe decay at 1173 and 1333 keV, obtaining an improvement over our earlier measurement of both lines with now 4.9 sigma significance for the combination of the two lines. The average flux per line is (4.4 \pm 0.9) \times 10^{-5} ph cm^{-2} s^{-1} rad^{-1} for the inner Galaxy region. Deriving the Galactic 26Al gamma-ray line flux with using the same set of observations and analysis method, we determine the flux ratio of 60Fe/26Al gamma-rays as 0.148 \pm 0.06. The current theoretical predictions are still consistent with our result.Comment: 10 pages, 7 figures, 2 tables, A&A in pres

    MAX: Development of a Laue diffraction lens for nuclear astrophysics

    Get PDF
    The next generation of instrumentation for nuclear astrophysics will have to achieve an improvement in sensitivity by a factor of 10-100 over present technologies. With the focusing gamma-ray telescope MAX we take up this challenge and propose to combine the required sensitivity with high spectral and angular resolution, and the capability to measure the polarization of the photons. MAX is a space-borne crystal diffraction telescope, featuring a broad-band Laue lens optimized for the observation of compact sources in two wide energy bands of high astrophysical relevance. Gamma rays will be focused from the large collecting area of a crystal diffraction lens onto a very small detector volume. As a consequence, the signal to background ratio is greatly enhanced, leading to unprecedented sensitivities
    corecore