72 research outputs found

    A Framework for Algorithm Stability

    Get PDF
    We say that an algorithm is stable if small changes in the input result in small changes in the output. This kind of algorithm stability is particularly relevant when analyzing and visualizing time-varying data. Stability in general plays an important role in a wide variety of areas, such as numerical analysis, machine learning, and topology, but is poorly understood in the context of (combinatorial) algorithms. In this paper we present a framework for analyzing the stability of algorithms. We focus in particular on the tradeoff between the stability of an algorithm and the quality of the solution it computes. Our framework allows for three types of stability analysis with increasing degrees of complexity: event stability, topological stability, and Lipschitz stability. We demonstrate the use of our stability framework by applying it to kinetic Euclidean minimum spanning trees

    Lower bounds for protrusion replacement by counting equivalence classes

    Get PDF
    Garnero et al. [SIAM J. Discrete Math. 2015, 29(4):1864--1894] recently introduced a framework based on dynamic programming to make applications of the protrusion replacement technique constructive and to obtain explicit upper bounds on the involved constants. They show that for several graph problems, for every boundary size tt one can find an explicit set Rt\mathcal{R}_t of representatives. Any subgraph HH with a boundary of size tt can be replaced with a representative HRtH' \in \mathcal{R}_t such that the effect of this replacement on the optimum can be deduced from HH and HH' alone. Their upper bounds on the size of the graphs in Rt\mathcal{R}_t grow triple-exponentially with tt. In this paper we complement their results by lower bounds on the sizes of representatives, in terms of the boundary size tt. For example, we show that each set of planar representatives Rt\mathcal{R}_t for Independent Set or Dominating Set contains a graph with Ω(2t/4t)\Omega(2^t / \sqrt{4t}) vertices. This lower bound even holds for sets that only represent the planar subgraphs of bounded pathwidth. To obtain our results we provide a lower bound on the number of equivalence classes of the canonical equivalence relation for Independent Set on tt-boundaried graphs. We also find an elegant characterization of the number of equivalence classes in general graphs, in terms of the number of monotone functions of a certain kind. Our results show that the number of equivalence classes is at most 22t2^{2^t}, improving on earlier bounds of the form (t+1)2t(t+1)^{2^t}

    Topological Stability of Kinetic kk-Centers

    Get PDF
    We study the kk-center problem in a kinetic setting: given a set of continuously moving points PP in the plane, determine a set of kk (moving) disks that cover PP at every time step, such that the disks are as small as possible at any point in time. Whereas the optimal solution over time may exhibit discontinuous changes, many practical applications require the solution to be stable: the disks must move smoothly over time. Existing results on this problem require the disks to move with a bounded speed, but this model is very hard to work with. Hence, the results are limited and offer little theoretical insight. Instead, we study the topological stability of kk-centers. Topological stability was recently introduced and simply requires the solution to change continuously, but may do so arbitrarily fast. We prove upper and lower bounds on the ratio between the radii of an optimal but unstable solution and the radii of a topologically stable solution---the topological stability ratio---considering various metrics and various optimization criteria. For k=2k = 2 we provide tight bounds, and for small k>2k > 2 we can obtain nontrivial lower and upper bounds. Finally, we provide an algorithm to compute the topological stability ratio in polynomial time for constant kk

    Stability analysis of kinetic orientation-based shape descriptors

    Get PDF
    We study three orientation-based shape descriptors on a set of continuously moving points: the first principal component, the smallest oriented bounding box and the thinnest strip. Each of these shape descriptors essentially defines a cost capturing the quality of the descriptor and uses the orientation that minimizes the cost. This optimal orientation may be very unstable as the points are moving, which is undesirable in many practical scenarios. If we bound the speed with which the orientation of the descriptor may change, this may lower the quality of the resulting shape descriptor. In this paper we study the trade-off between stability and quality of these shape descriptors. We first show that there is no stateless algorithm, an algorithm that keeps no state over time, that both approximates the minimum cost of a shape descriptor and achieves continuous motion for the shape descriptor. On the other hand, if we can use the previous state of the shape descriptor to compute the new state, we can define "chasing" algorithms that attempt to follow the optimal orientation with bounded speed. We show that, under mild conditions, chasing algorithms with sufficient bounded speed approximate the optimal cost at all times for oriented bounding boxes and strips. The analysis of such chasing algorithms is challenging and has received little attention in literature, hence we believe that our methods used in this analysis are of independent interest

    Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

    Full text link
    A fundamental question in computational geometry is for a dynamic collection of geometric objects in Euclidean space, whether it is possible to maintain a maximum independent set in polylogarithmic update time. Already, for a set of intervals, it is known that no dynamic algorithm can maintain an exact maximum independent set with sublinear update time. Therefore, the typical objective is to explore the trade-off between update time and solution size. Substantial efforts have been made in recent years to understand this question for various families of geometric objects, such as intervals, hypercubes, hyperrectangles, and fat objects. We present the first fully dynamic approximation algorithm for disks of arbitrary radii in the plane that maintains a constant-factor approximate maximum independent set in polylogarithmic update time. First, we show that for a fully dynamic set of nn unit disks in the plane, a 1212-approximate maximum independent set can be maintained with worst-case update time O(log2n)O(\log^2 n), and optimal output-sensitive reporting. Moreover, this result generalizes to fat objects of comparable sizes in any fixed dimension dd, where the approximation ratio depends on the dimension and the fatness parameter. Our main result is that for a fully dynamic set of disks of arbitrary radii in the plane, an O(1)O(1)-approximate maximum independent set can be maintained in polylogarithmic expected amortized update time.Comment: Abstract is shortened to meet Arxiv's requirement on the number of character

    A framework for algorithm stability

    Get PDF
    We say that an algorithm is stable if small changes in the input result in small changes in the output. Algorithm stability plays an important role when analyzing and visualizing time-varying data. However, so far, there are only few theoretical results on the stability of algorithms, possibly due to a lack of theoretical analysis tools. In this paper we present a framework for analyzing the stability of algorithms. We focus in particular on the tradeoff between the stability of an algorithm and the quality of the solution it computes. Our framework allows for three types of stability analysis with increasing degrees of complexity: event stability, topological stability, and Lipschitz stability. We demonstrate the use of our stability framework by applying it to kinetic Euclidean minimum spanning trees

    Lower Bounds for Protrusion Replacement by Counting Equivalence Classes

    Get PDF
    Garnero et al. [SIAM J. Discrete Math. 2015, 29(4):1864-1894] recently introduced a framework based on dynamic programming to make applications of the protrusion replacement technique constructive and to obtain explicit upper bounds on the involved constants. They show that for several graph problems, for every boundary size t one can find an explicit set R_t of representatives. Any subgraph H with a boundary of size t can be replaced with a representative H\u27 in R_t such that the effect of this replacement on the optimum can be deduced from H and H\u27 alone. Their upper bounds on the size of the graphs in R_t grow triple-exponentially with t. In this paper we complement their results by lower bounds on the sizes of representatives, in terms of the boundary size t. For example, we show that each set of planar representatives R_t for the Independent Set problem contains a graph with Omega(2^t / sqrt{4t}) vertices. This lower bound even holds for sets that only represent the planar subgraphs of bounded pathwidth. To obtain our results we provide a lower bound on the number of equivalence classes of the canonical equivalence relation for Independent Set on t-boundaried graphs. We also find an elegant characterization of the number of equivalence classes in general graphs, in terms of the number of monotone functions of a certain kind. Our results show that the number of equivalence classes is at most 2^{2^t}, improving on earlier bounds of the form (t+1)^{2^t}
    corecore