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Abstract
We say that an algorithm is stable if small changes in the input result in small changes in the
output. Algorithm stability plays an important role when analyzing and visualizing time-varying
data. However, so far, there are only few theoretical results on the stability of algorithms, possibly
due to a lack of theoretical analysis tools. In this paper we present a framework for analyzing
the stability of algorithms. We focus in particular on the tradeoff between the stability of an
algorithm and the quality of the solution it computes. Our framework allows for three types of
stability analysis with increasing degrees of complexity: event stability, topological stability, and
Lipschitz stability. We demonstrate the use of our stability framework by applying it to kinetic
Euclidean minimum spanning trees.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems: Geometrical
problems and computations

Keywords and phrases Stability framework, stability analysis, time-varying data, minimum
spanning tree

1 Introduction

With recent advances in technology, vast amounts of time-varying data are being processed
and analyzed on a daily basis. Time-varying data play an important role in a many different
application areas, such as computer graphics, robotics, simulation, and visualization. There
is a great need for algorithms that can operate efficiently on time-varying data and that can
offer guarantees on the quality of the results. A specific relevant subset of time-varying data
are motion data: geometric time-varying data. To deal with the challenges of motion data,
Basch et al. [4] introduced the kinetic data structures (KDS) framework in 1999. Kinetic
data structures are data structures that efficiently maintain a structure on a set of moving
objects. The framework has sparked a large amount of research and has resulted in many
efficient algorithms for motion data. However, one aspect of algorithms for time-varying data
has received little attention in the theoretical computer science community so far: stability.
Whenever analysis results on time-varying data need to be communicated to humans, for
example via visual representations, it is important that these results are stable: small changes
in the data result in small changes in the output. Sudden changes in the visual representation
of data disrupt the mental map [19] of the user and prevent the recognition of temporal
patterns. Stability also plays a role if changing the result is costly in practice, for example in
physical network design, where frequent total overhauls of the network are simply infeasible.

We would hence like to argue that, next to running time and solution quality, stability
could and should be a third important criterion when analyzing and comparing algorithms.
Furthermore, it is particularly interesting to study the tradeoffs that can be made among
these three criteria. However, currently there are no good tools to formally analyze or
measure the stability of an algorithm, and as a result, the tradeoff between running time,
solution quality, and stability is poorly understood for most problems.
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2 A Framework for Algorithm Stability

Results and organization. We present a framework to measure and analyze the stability of
algorithms. As a first step, we limit ourselves to analyzing the tradeoff between stability and
solution quality, omitting running time from consideration. Our framework allows for three
types of stability analysis of increasing degrees of complexity: event stability, topological
stability, and Lipschitz stability. It can be applied both to motion data and to more general
time-varying data. We demonstrate the use of our stability framework by applying it to the
problem of kinetic Euclidean minimum spanning trees (EMSTs). Some of our results for
kinetic EMSTs are directly more widely applicable.

In Section 2 we give an overview of our framework for stability. In Sections 3, 4, and 5
we describe event stability, topological stability, and Lipschitz stability, respectively. In each
of these sections we first describe the respective type of stability analysis in a generic setting,
followed by specific results using that type of stability analysis on the kinetic EMST problem.
In Section 6 we make some concluding remarks on our stability framework. Omitted proofs
can be found in Appendix A.

Related work. Stability is a natural point of concern in more visual and applied research
areas such as graph drawing, (geo-)visualization, and automated cartography. For example,
in dynamic map labelling [5, 14, 13, 22], the consistent dynamic labelling model allows a
label to appear and disappear only once, making it very stable. There are very few theoretical
results, with the noteworthy exception of so-called simultaneous embeddings [6, 10] in graph
drawing, which can be seen as a very restricted model of stability. However, none of these
results offer any real structural insight into the tradeoff between solution quality and stability.

In computational geometry there are a few results on the tradeoff between solution quality
and stability. Specifically, Durocher and Kirkpatrick [8] consider the tradeoff between the
solution quality of Euclidean 2-centers and a bound on the velocity with which they can
move. Furthermore, De Berg et al. [7] show similar results in the black-box KDS model. One
can argue that the KDS framework [16] already indirectly considers stability in a limited
form, namely as the number of external events. However, the goal of a KDS is typically to
reduce the running time of the algorithm, and rarely to sacrifice the running time or quality
of the results to reduce the number of external events.

Kinetic Euclidean minimum spanning trees and related structures have been studied
extensively. Katoh et al. [18] proved an upper bound of O(n32α(n)) for the number of external
events of EMSTs of n linearly moving points, where α(n) is the inverse Ackermann function.
Rahmati et al. [23] present a kinetic data structure for EMSTs in the plane that processes
O(n3β2

2s+2(n) logn) events in the worst case, where s is a measure for the complexity of
the point trajectories and βs(n) is an extremely slow-growing function. The best known
lower bound for external events of EMSTs in d dimensions is Ω(nd) [21]. Since the EMST
is a subset of the Delaunay triangulation, we can also consider to kinetically maintain the
Delaunay triangulation instead. Fu and Lee [11], and Guibas et al. [17] show that the
Delaunay triangulation undergoes O(n2λs+2(n)) external events (near-cubic), where λs(n) is
the maximum length of an (n, s)-Davenport-Schinzel sequence [28]. On the other hand, the
best lower bound for external events of the Delaunay triangulation is only Ω(n2) [28]. Rubin
improves the upper bound to O(n2+ε), for any ε > 0, if the number of degenerate events
is limited [26], or if the points move along a straight line with unit speed [27]). Agarwal et
al. [1] also consider a more stable version of the Delaunay triangulation, which undergoes at
most a nearly quadratic number of external events. However, external events for EMSTs do
not necessarily coincide with external events of the Delaunay triangulation [24]. To further
reduce the number of external events, we can consider approximations of the EMST, for
example via spanners or well-separated pair decompositions [3]. However, kinetic t-spanners
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already undergo Ω(n
2

t2 ) external events [12]. Our stability framework allows us to reduce the
number of external events even further and to still state something meaningful about the
quality of the resulting EMSTs.

2 Stability framework

Intuitively, we can say that an algorithm is stable if small changes in the input lead to small
changes in the output. More formally, we can formulate this concept generically as follows.
Let Π be an optimization problem that, given an input instance I from a set I, asks for a
feasible solution S from a set S that minimizes (or maximizes) some optimization function
f : I × S → R. An algorithm A for Π can be seen as a function A : I → S. Similarly, the
optimal solutions for Π can be described by a function OPT: I → S. To define the stability
of an algorithm, we need to quantify changes in the input instances and in the solutions. We
can do so by imposing a metric1 on I and S. Let dI : I × I → R≥0 be a metric for I and
let dS : S × S → R≥0 be a metric for S. We can then define the stability of an algorithm
A : I → S as follows.

St(A) = max
I,I′∈I

dS(A(I),A(I ′))
dI(I, I ′) (1)

This definition for stability is closely related to that of the multiplicative distortion of metric
embeddings, where A induces a metric embedding from the metric space (I, dI) into (S, dS).
The lower the value for St(A), the more stable we consider the algorithm A to be. As with
the distortion of metric embeddings, there are many other ways to define the stability of an
algorithm given the metrics, but the above definition is sufficient for our purpose.

For many optimization problems, the function OPT may be very unstable. This suggests
an interesting tradeoff between the stability of an algorithm and the solution quality. Un-
fortunately, the generic formulation of stability provided above is very unwieldy. It is not
always clear how to define metrics dI and dS such that meaningful results can be derived.
Additionally, it is not obvious how to deal with optimization problems with continuous input
and discrete solutions, where the algorithm is inherently discontinuous, and thus the stability
is unbounded by definition. Finally, analyses of this form are often very complex, and it is
not straightforward to formulate a simplified version of the problem. In our framework we
hence distinguish three types of stability analysis: event stability, topological stability, and
Lipschitz stability.

Event stability follows the setting of kinetic data structures (KDS). That is, the input (a
set of moving objects) changes continuously as a function over time. However, contrary to
typical KDSs where a constraint is imposed on the solution quality, we aim to enforce the
stability of the algorithm. For event stability we simply disallow the algorithm to change the
solution too rapidly. Doing so directly is problematic, but we formalize this approach using
the concept of k-optimal solutions. As a result, we can obtain a tradeoff between stability
and quality that can be tuned by the parameter k. Note that event stability captures only
how often the solution changes, but not how much the solution changes at each event.

Topological stability takes a first step towards the generic setup described above. However,
instead of measuring the amount of change in the solution using a metric, we merely require
the solution to behave continuously. To do so we only need to define a topology on the solution

1 A metric would typically be the most suitable solution, but any dissimilarity function is sufficient.
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space S that captures stable behavior. Surprisingly, even though we completely ignore the
amount of change in a single time step, this type of analysis still provides meaningful
information on the tradeoff between solution quality and stability. In fact, the resulting
tradeoff can be seen as a lower bound for any analysis involving metrics that follow the used
topology.

Lipschitz stability finally captures the generic setup described above. As the name suggests,
we require the algorithm to be Lipschitz continuous and we provide an upper bound on
the Lipschitz constant, which is equivalent to St(A). We are then again interested in the
quality of the solutions that can be obtained with any Lipschitz stable algorithm. Given the
complexity of this type of analysis, a complete tradeoff for any value of the Lipschitz constant
is typically out of reach, but some results may be obtained for values that are sufficiently
small or large.

Remark. Our framework makes the assumption that an algorithm is a function A : I → S.
However, in a kinetic setting this is not necessarily true, since the algorithm has history.
More precisely, for some input instance I, a kinetic algorithm may produce different solutions
for I based on the instances processed earlier. We generally allow this behavior, and for
event stability this behavior is even crucial. However, for the sake of simplicity, we will
treat an algorithm as a function. We also generally assume in our analysis that the input is
time-varying, that is, the input is a function over time, or follows a trajectory through the
input space I. Again, for the sake of simplicity, this is not always directly reflected in our
definitions. Beyond that, we operate in the black-box model, in the sense that the algorithm
does not know anything about future instances.

3 Event stability

The simplest and most intuitive form of stability is event stability. Similarly to the number
of external events in KDSs, event stability captures only how often the solution changes.

3.1 Event stability analysis
Let Π be an optimization problem with a set of input instances I, a set of solutions S, and
optimization function f : I × S → R. Following the framework of kinetic data structures, we
assume that the input instances include certain parameters that can change as a function of
time. To apply the event stability analysis, we require that all solutions have a combinatorial
description, that is, the solution description does not use the time-varying parameters of
the input instance. We further require that every solution S ∈ S is feasible for every input
instance I ∈ I. This automatically disallows any insertions or deletions of elements. Note
that an insertion or a deletion would typically force an event, and thus including this aspect
in our stability analysis does not seem useful.

For example, in the setting of kinetic EMSTs, the input instances would consist of a fixed
set of points. The coordinates of these points can then change as a function over time. A
solution of the kinetic EMST problem consists of the combinatorial description of a tree
graph on the set of input points. Note that every tree graph describes a feasible solution for
any input instance, if we do not insist on any additional restrictions like, e.g., planarity. The
minimization function f then simply measures the total length of the tree, for which we do
need to use the time-varying parameters of the problem instance.

Rather than directly restricting the quality of the solutions, we aim to restrict the stability
of any algorithm. To that end, we introduce the concept of k-optimal solutions. Let dI be a
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metric on the input instances, and let OPT: I → S describe the optimal solutions. We say
that a solution S ∈ S is k-optimal for an instance I ∈ I if there exists an input instance I ′ ∈ I
such that f(I ′, S) = f(I ′, OPT (I ′)) and dI(I, I ′) ≤ k. With this definition any optimal
solution is always 0-optimal. Note that this definition requires a form of normalization on the
metric dI , similar to that of e.g. smoothed analysis. We therefore require that there exists a
constant c such that every solution S ∈ S is c-optimal for every instance I ∈ I. For technical
reasons we require the latter condition to hold only for some time interval [0, T ] of interest.

Following the framework of kinetic data structures, we typically require the functions of
the time-varying parameters to be well-behaved (e.g., polynomial functions), for otherwise
we cannot derive meaningful bounds. The event stability analysis then considers two aspects.
First, we analyze how often the solution needs to change to maintain a k-optimal solution
for every point in time. Second, we analyze how well a k-optimal solution approximates
an optimal solution. Typically we are not able to directly obtain good bounds on the
approximation ratio, but given certain reasonable assumptions, good approximation bounds
as a function of k can be provided.

3.2 Event stability for EMSTs
Our input consists of a set of points P = {p1, . . . , pn} where each point pi has a trajectory
described by the function xi : [0, T ]→ Rd. The goal is to maintain a combinatorial description
of a short spanning tree on P that does not change often. We generally assume that the
functions xi are polynomials with bounded degree s.

To properly use the concept of k-optimal solutions, we first need to normalize the
coordinates. We simply assume that xi(t) ∈ [0, 1]d for t ∈ [0, T ]. This assumption may
seem overly restrictive for kinetic point sets, but note that we are only interested in relative
positions, and thus the frame of reference may move with the points. Next, we define the
metric dI along the trajectory as follows.

dI(t, t′) = max
i
‖xi(t)− xi(t′)‖ (2)

This metric simply measures the distance traveled of the point that traveled the farthest.
Note that this metric, and the resulting definition of k-optimal solutions, is not specific
to EMSTs and can be used in general for problems with kinetic point sets as input. Now
let OPT (t) be the EMST at time t. Then, by definition, OPT (t) is k-optimal at time t′
if dI(t, t′) ≤ k. Our approach is now very simple: we compute the EMST and keep that
solution as long as it is k-optimal, after which we compute the new EMST, and so forth.
Below we analyze how often we need to recompute the EMST, and how well a k-optimal
solution approximates the EMST.

Number of events. To derive an upper bound on the number of events, we first need to
bound the speed of any point with a polynomial trajectory and bounded coordinates. For
this we can use a classic result known as the Markov Brothers’ inequality.

I Lemma 1 ([20]). Let h(t) be a polynomial with degree at most s such that h(t) ∈ [0, 1] for
t ∈ [0, T ], then |h′(t)| ≤ s2/T for all t ∈ [0, T ].

I Lemma 2. Let P be a kinetic point set with polynomial trajectories xi(t) ∈ [0, 1]d (t ∈ [0, T ])
of degree at most s, then we need only O( s

2

k ) changes to maintain a k-optimal solution.

Proof. By Lemma 1 the velocity of any point is at most s2/T . Now assume that we have
computed an optimal solution S for some time t. The solution S remains k-optimal until
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O( 1n ) k

Figure 1 An instance where Ω( s
k

) events are triggered. The blue points are stationary, while the
red point moves along a trajectory of degree 3. The trajectory is shown as an arrow along the 1D
space, where the gray part has already been traversed.

one of the points has moved at least k units. Since the velocity of the points is bounded,
this takes at least ∆t = kT/s2 time, at which point we can recompute the optimal solution.
Since the total time interval is of length T , this can happen at most T/∆t = s2/k times. J

Next we show that this upper bound is tight up to a factor of s, using Chebyshev polynomials
of the first kind [25]. A Chebyshev polynomial of degree s with range [0, 1] and domain [0, T ]
will pass through the entire range exactly s times.

I Lemma 3. Let P be a kinetic point set with n points with polynomial trajectories xi(t) ∈
[0, 1]d (t ∈ [0, T ]) of degree at most s, then we need Ω(min( sk , sn)) changes in the worst case
to maintain a k-optimal solution.

Proof. We can restrict ourselves to d = 1. Let p1 move along a Chebyshev polynomial of
degree s, and let the remaining points be stationary and placed equidistantly along the
interval [0, 1]. As soon as p1 meets one of the other points, then p1 can travel at most k
units before the solution is no longer k-optimal (see Fig.1). Therefore, p1 moving through
the entire interval requires Ω(min(1/k, n)) changes to the solution. Doing so s times gives
the desired bound. J

It is important to notice that this behavior is fairly special for polynomial trajectories. If we
allow more general trajectories, then this bound on the number of changes breaks down.

I Lemma 4. Let P be a kinetic point set with n points with pseudo-algebraic trajectories
xi(t) ∈ [0, 1]d (t ∈ [0, T ]) of degree at most s, then we need Ω(min( snk , sn

2)) changes in the
worst case to maintain a k-optimal solution.

Proof. We can restrict ourselves to d = 1. Any two pseudo-algebraic trajectories of degree at
most s can cross each other at most s times. We make n/2 points stationary and place them
equidistantly along the interval [0, 1]. The other n/2 points follow trajectories that take them
through the entire interval s times, in such a way that every point moves through the entire
interval completely before another point does so. The resulting trajectories are clearly pseudo-
algebraic, and each time a point moves through the entire interval it requires Ω(min(1/k, n))
changes to the solution. As a result, the total number of changes is Ω(min( snk , sn

2)). J

We can show the same lower bound for algebraic trajectories of degree at most s, but this is
slightly more involved. The result can be found in Appendix A.

Approximation factor. We cannot expect k-optimal solutions to be a good approximation
of optimal EMSTs in general: if all points are within distance k from each other, then all
solutions are k-optimal. We therefore need to make the assumption that the points are
spread out reasonably throughout the motion. To quantify this, we use a measure inspired by
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the order-l spread, as defined in [9]. Let mindistl(P ) be the smallest distance in P between
a point and its l-th nearest neighbor. We assume that mindistl(P ) ≥ 1/∆l throughout the
motion, for some value of ∆l. We can use this assumption to give a lower bound on the
length of the EMST. Pick an arbitrary point and remove all points from P that are within
distance 1/∆l, and repeat this process until the smallest distance is at least 1/∆l. By our
assumption, we remove at most l − 1 points for each chosen point, so we are left with at
least n/l points. The length of the EMST on P is at least the length of the EMST on the
remaining n/l points, which has length Ω( n

l∆l
).

I Lemma 5. A k-optimal solution of the EMST problem on a set of n points P is an
O(1 + kl∆l)-approximation of the EMST, under the assumption that mindistl(P ) ≥ 1/∆l.

Proof. Let S be a k-optimal solution of P and let OPT be an optimal solution of P . By
definition there is a point set P ′ for which the length of solution S is at most that of OPT.
Since dI(P, P ′) ≤ k, the length of each edge can grow or shrink by at most 2k when moving
from P ′ to P . Therefore we can state that f(P, S) ≤ f(P,OPT) + 4kn. Now, using the lower
bound on the length of an EMST, we obtain the following.

f(P,OPT) + 4kn ≤ f(P,OPT) + 4kO(f(P,OPT)l∆l)
= O(1 + kl∆l) · f(P,OPT) J

Note that there is a clear tradeoff between the approximation ratio and how restrictive the
assumption on the spread is. Regardless, we can obtain a decent approximation while only
processing a small number of events. If we choose reasonable values k = O(1/n), l = O(1),
and ∆l = O(n), then our results show that, under the assumptions, a constant-factor
approximation of the EMST can be maintained while processing only O(n) events.

4 Topological stability

The event stability analysis has two major drawbacks: (1) it is only applicable to problems
for which the solutions are always feasible and described combinatorially, and (2) it does
not distinguish between small and large structural changes. Topological stability analysis is
applicable to a wide variety of problems and enforces continuous changes to the solution.

4.1 Topological stability analysis
Let Π be an optimization problem with input instances I, solutions S, and optimization
function f . An algorithm A : I → S is topologically stable if, for any (continuous) path
π : [0, 1]→ I in I, Aπ is a (continuous) path in S. To properly define a (continuous) path
in I and S we need to specify a topology TI on I and a topology TS on S. Alternatively
we could specify metrics dI and dS , but this is typically more involved. We then want to
analyze the approximation ratio of any topologically stable algorithm with respect to OPT.
That is, we are interested in the ratio

TS(Π, TI , TS) = inf
A

sup
I∈I

f(I,A(I))
f(I,OPT(I)) (3)

where the infimum is taken over all topologically stable algorithms. Naturally, if OPT is
already topologically stable, then this type of analysis does not provide any insight and
the ratio is simply 1. However, in many cases, OPT is not topologically stable. The above
analysis can also be applied if the solution space (or the input space) is discrete. In such
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cases, continuity can often be defined using so-called flip graphs, for example with edge flips
for triangulations or rotations in rooted binary trees. The graph topology of the flip graph
can then be used in the above definition. To make this proper, we also need to define f on
the edges of this graph, but a suitable choice can easily be made based on the problem itself;
often a linear interpolation on the edges is sufficient.

4.2 Topological stability of EMSTs
We use the same setting of the kinetic EMST problem as in Section 3.2, except that we
do not restrict the trajectories of the points and we do not normalize the coordinates. We
merely require that the trajectories are continuous. To define this properly, we need to define
a topology on the input space, but for a kinetic point set with n points in d dimensions we
can simply use the standard topology on Rdn as TI . To apply topological stability analysis,
we also need to specify a topology on the (discrete) solution space. As the points move, the
minimum spanning tree may have to change at some point in time by removing one edge
and inserting another edge. Since these two edges may be very far apart, we do not consider
this operation to be stable or continuous. Instead we specify the topology of S using a flip
graph, where the operations are either edge slides or edge rotations [2, 15]. For edge slides we
give tight bound on TS(EMST, TI , TS), and for edge rotations we provide upper and lower
bounds.

Edge slides. An edge slide is defined as the operation of moving one endpoint of an edge
to one of its neighboring vertices along the edge to that neighbor. Since this operation is
very local, we consider it to be stable. Note that after every edge slide the tree must still be
connected. Using Lemmata 6 and 7 we show that TS(EMST, TI , TS) = 3

2 for edge slides.

I Lemma 6. If TS is the topology on S defined by edge slides, then TS(EMST, TI , TS) ≤ 3
2 .

x

e

e′

C

Figure 2 x is the
longest edge during an
edge slide from e to e′.

Proof. Consider a point in time where the EMST has to be updated
by removing an edge e and inserting an edge e′, where |e| = |e′|. Note
that e and e′ form a cycle C with other edges of the EMST. We now
slide edge e to edge e′ by sliding it along the vertices of C. Let x be
the longest intermediate edge when sliding from e to e′ (see Fig. 2).
To allow x to be as long as possible with respect to the length of the
EMST, the EMST should be fully contained in C. By the triangle
inequality we get that 2|x| ≤ |C|. Since the length of the EMST is
OPT = |C|−|e|, we get that |x| ≤ OPT /2+ |e|/2. Thus, the length of
the intermediate tree is |C|−2|e|+ |x| = OPT−|e|+ |x| ≤ 3

2 OPT. J

I Lemma 7. If TS is the topology on S defined by edge slides, then, for any ε > 0,
TS(EMST, TI , TS) ≥ 3

2 − ε.

Proof. Consider a point in time where the EMST has to be updated by removing an edge
e and inserting an edge e′, where e and e′ share an endpoint v. Let the remainder of the
EMST be very thin and elongated, as shown in Figure 3, such that the distance between v

e

e′
v

Figure 3 An instance that shows how an edge slide from edge e to edge e′ will at some point be
in the red configuration. This configuration is a ( 3

2 − ε)-approximation of the EMST.
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e

e′

x

u v

u′ v′

C

Figure 4 If one part of C is small enough,
then we can rotate one endpoint of e directly
to one endpoint of e′.

e

e′

u v

u′ v′

eReL

uR

vRvL

uL

C

Figure 5 The potential intermediate edges
when rotating edge e to e′.

and its farthest point is OPT /2− ε, where OPT is the length of the EMST. We can make
this construction for any ε > 0 by using enough points and making e and e′ arbitrarily short.
Since any edge slide from e to e′ includes all edges between v and all other points, we get
that, for any ε > 0, TS(EMST, TI , TS) ≥ 3

2 − ε. If the algorithm does not decide to slide
edge e to e′, then we can gradually move the top points towards the rightmost point. The
argument now remains the same as the EMST is shrinking. J

Edge rotations. Edge rotations are a generalization of edge slides, that allow one endpoint
of an edge to move to any other vertex. These operations are clearly not as stable as edge
slides, but they are still more stable than the deletion and insertion of arbitrary edges. Using
Lemmata 8 and 9 we show that 5

4 ≤ TS(EMST, TI , TS) ≤ 4
3 for edge rotations.

I Lemma 8. If TS is the topology on S defined by edge rotations, then TS(EMST, TI , TS) ≤ 4
3 .

Proof. Consider a point in time where the EMST has to be updated by removing an edge
e = (u, v) and inserting an edge e′ = (u′, v′), where |e| = |e′|. Note that e and e′ form a cycle
C with other edges of the EMST. We now rotate edge e to edge e′ along some of the vertices
of C. Let x be the longest intermediate edge when rotating from e to e′. To allow x to be as
long as possible with respect to the length of the EMST, the EMST should be fully contained
in C. We argue that |x| ≤ OPT /3 + |e|, where OPT is the length of the EMST. Removing e
and e′ from C will split C into two parts, where we assume that u and u′ (v and v′) are in the
left (right) part. First assume that one of the two parts has length at most OPT /3. Then
we can rotate e to (u, v′), and then to e′, which implies that |x| = |(u, v′)| ≤ OPT /3 + |e| by
the triangle inequality (see Fig. 4). Now assume that both parts have length at least OPT /3.
Let eL = (uL, vL) be the edge in the left part that contains the midpoint of that part, and let
eR = (uR, vR) be the edge in the right part that contains the midpoint of that part, where
uL and uR are closest to e (see Fig. 5). Furthermore, let Z be the length of C \ {e, e′, eL, eR}.
Now consider the potential edges (u, vR), (v, vL), (u′, uR), and (v′, uL). By the triangle
inequality, the sum of the lengths of these edges is at most 4|e|+2|eL|+2|eR|+Z. Thus, one of
these potential edges has length at most |e|+ |eL|/2+ |eR|/2+Z/4. Without loss of generality
let (u, vR) be that edge (the construction is fully symmetric). We can now rotate e to (u, vR),
then to (u′, vR), and finally to e′. As each part of C has length at most 2 OPT /3, we get that
|(u′, vR)| ≤ OPT /3+|e| by construction. Furthermore we have that OPT = |e|+|eL|+|eR|+Z.
Thus, |(u, vR)| ≤ |e|+ |eL|/2+ |eR|/2+Z/4 = OPT /3+2|e|/3+ |eL|/6+ |eR|/6−Z/12. Since
e needs to be removed to update the EMST, it must be the longest edge in C. Therefore
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|(u, vR)| ≤ OPT /3 + |e|, which shows that |x| ≤ OPT /3 + |e|. Since the length of the
intermediate tree is OPT−|e|+ |x| ≤ 4

3 OPT, we obtain that TS(EMST, TI , TS) ≤ 4
3 . J

I Lemma 9. If TS is the topology on S defined by edge rotations, then, for any ε > 0,
TS(EMST, TI , TS) ≥ 5

4 − ε.

e′

e

Figure 6 Lower
bound construction
for edge rotations.

Proof. Consider a point in time where the EMST has to be updated
by removing an edge e and inserting an edge e′, where |e| is very
small. Let the remaining points be arranged in a diamond shape as
shown in Figure 6. When rotating from e to e′, we must in some
step have an edge that connects the left top of the diamond with
the right bottom (or the right top with the left bottom). The length
of this edge x must be at least the length of a side of the diamond.
By using enough points and making e and e′ short enough, we can
ensure that, for any ε > 0, |x| ≥ OPT /4− ε, where OPT is the length
of the EMST. If e is short enough, this implies that, for any ε > 0,
TS(EMST, TI , TS) ≥ 5

4 − ε. If the algorithm does not decide to rotate
edge e to e′, then we can gradually move the right top points towards the rightmost point,
and the left top points towards the leftmost point. The argument now remains the same as
the EMST is shrinking. J

Unfortunately, we do not obtain tight bounds for the edge rotations. This is caused by the
fact that our upper bound only uses the triangle inequality, and not any properties specific
to Euclidean distance. Indeed, if we would allow general metrics, then the upper bound is
tight. The lower bound is realized by the graph metric on a 4-cycle, when the middle edge of
an EMST is replaced by the opposite edge.

5 Lipschitz stability

The major drawback of topological stability analysis is that it still does not fully capture
stable behavior; the algorithm must be continuous, but we can still make many changes to
the solution in an arbitrarily small time step. In Lipschitz stability analysis we additionally
limit how fast the solution can change.

5.1 Lipschitz stability analysis
Let Π be an optimization problem with input instances I, solutions S, and optimization
function f . To quantify how fast a solution changes as the input changes, we need to specify
metrics dI and dS on I and S, respectively. An algorithm A : I → S is K-Lipschitz stable if
for any I, I ′ ∈ I we have that dS(A(I),A(I ′)) ≤ KdI(I, I ′). We are then again interested in
the approximation ratio of any K-Lipschitz stable algorithm with respect to OPT. That is,
we are interested in the ratio

LS(Π,K, dI , dS) = inf
A

sup
I∈I

f(I,A(I))
f(I,OPT(I)) (4)

where the infimum is taken over all K-Lipschitz stable algorithms. It is easy to see that
LS(Π,K, dI , dS) is lower bounded by TS(Π, TI , TS) for the corresponding topologies TI and
TS of dI and dS , respectively. As already mentioned in Section 2, analyses of this type are
often quite hard. First, we often need to be very careful when choosing the metrics dI and
dS , as they should behave similarly with respect to scale. For example, let the input consist
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of a set of points in the plane and let cI for I ∈ I be the instance obtained by scaling all
coordinates of the points in I by the factor c. Now assume that dI depends linearly on
scale, that is dI(cI, cI ′) ∼ cdI(I, I ′), and that dS is independent of scale. Then, for some
fixed K, we can reduce the effective speed of any K-Lipschitz stable algorithm arbitrarily
by scaling down the instances sufficiently, rendering the analysis meaningless. We further
need to be careful with discrete solution spaces. However, using the flip graphs as mentioned
in Section 4 we can extend a discrete solution space to a continuous space by including the
edges.

Typically it will be hard to fully describe LS(Π,K, dI , dS) as a function of K. However, it
may be possible to obtain interesting results for certain values of K. One value of interest is
the value of K from which the approximation ratio equals or approaches the approximation
ratio of the corresponding topological stability analysis. Another potential value of interest
is the value of K below which any K-Lipschitz stable algorithm performs asymptotically as
bad as a constant algorithm always computing the same solution regardless of instance.

5.2 Lipschitz stability of EMSTs
We use the same setting of the kinetic EMST problem as in Section 4.2, except that, instead
of topologies, we specify metrics for I and S. For dI we can simply use the metric in
Equation 2, which implies that points move with a bounded speed. For dS we use a metric
inspired by the edge slides of Section 4.2. To that end, we need to define how long a particular
edge slide takes, or equivalently, how “far” an edge slide is. To make sure that dI and dS
behave similarly with respect to scale, we let dS measure the distance the sliding endpoint
has traveled during an edge slide. However, this creates an interesting problem: the edge on
which the endpoint is sliding may be moving and stretching/shrinking during the operation
(see Fig. 7). This influences how long it takes to perform the edge slide. We need to be
more specific: (1) As the points are moving, the relative position (between 0 and 1 from
starting endpoint to finishing endpoint) of a sliding endpoint is maintained without cost
in dS , and (2) dS measures the difference in relative position multiplied by the length L(t)
of the edge on which the endpoint is sliding. More tangibly, an edge slide performed by a
K-Lipschitz stable algorithm can be performed in t∗ time such that

∫ t∗
0

K
L(t)dt = 1, where

L(t) describes the length of the edge on which the endpoint slides as a function of time.
Finally, the optimization function f simply computes a linear interpolation of the cost on
the edges of the flip graph defined by edge slides.

We now give an upper bound on K below which any K-Lipschitz stable algorithm for
kinetic EMST performs asymptotically as bad as any fixed tree. Given the complexity of
the problem, our bound is fairly crude. We provide it anyway to demonstrate the use of
our framework, but we believe that a stronger bound exists. First we show the asymptotic
approximation ratio of any spanning tree.

I Lemma 10. Any spanning tree on a set of n points P is an O(n)-approximation of the
EMST.

I Lemma 11. Let dS be the metric for edge slides, then LS(EMST, c
logn , dI , dS) = Ω(n) for

a small enough constant c > 0, where n is the number of points.

Proof. Consider the instance where n points are placed equidistantly vertically above each
other with distance 1/n between two consecutive points. Now let A be any (c/ logn)-Lipschitz
stable algorithm for the kinetic EMST problem and let T be the tree computed by A on
this point set. We now color the points red and blue based on a 2-coloring of T . We then
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T

t

x
T

Figure 7 An instance where any K-Lipschitz stable algorithm performs badly: Starting from a
solution on equidistantly placed points, the red and blue points move in opposite directions (left).
The endpoint of the red edge slides over stretching edge T (middle). The length of edge T at time t

is
√

x2 + t2 (right).

move the red points to the left by 1
2 and the blue points to the right by 1

2 in the time
interval [0, 1] (see Fig. 7 left). This way every edge of T will be stretched to a length of
Ω(1) and thus the length of T will be Ω(n). On the other hand, the length of the EMST
in the final configuration is OPT = O(1). Therefore, we must perform an edge slide (see
Fig. 7 middle). However, we show that A cannot complete any edge slide. Consider any edge
of T and let x be the initial (vertical) distance between its endpoints. Then the length of
this edge can be described as L(t) =

√
x2 + t2 (see Fig. 7 right). Now assume that we want

to slide an endpoint over this edge. To finish this edge slide before t = 1, we require that∫ 1
0

c
logn

√
x2+t2 dt ≥ 1. This solves to c log(1/x+

√
1 + 1/x2) ≥ logn. However, since x ≥ 1/n,

we get that c log(1/x+
√

1 + 1/x2) ≤ c log(n+
√

1 + n2) < logn for c small enough. Finally,
since one edge slide can reduce the length of only one edge to o(1), the cost of the solution
at t = 1 computed by A is Ω(n). Thus, LS(EMST, c

logn , dI , dS) = Ω(n) for a small enough
constant c > 0. J

6 Conclusion

We presented a framework for algorithm stability, which includes three types of stability
analysis, namely event stability, topological stability, and Lipschitz stability. We also
demonstrated the use of this framework by applying the different types of analysis to the
kinetic EMST problem, deriving new interesting results. We believe that, by providing
different types of stability analysis with increasing degrees of complexity, we make stability
analysis for algorithms more accessible, and make it easier to formulate interesting open
problems with regard to algorithm stability.

However, the framework that we have presented is not designed to offer a complete picture
on algorithm stability. In particular, we do not consider the algorithmic aspect of stability.
For example, if we already know how the input will change over time, can we efficiently
compute a stable function of solutions over time that is optimal with regard to solution
quality? Or, in a more restricted sense, can we efficiently compute the one solution that is
best for all inputs over time? Even in the black-box model we can consider designing efficient
algorithms that are K-Lipschitz stable and perform well with regard to solution quality. We
leave such problems for future work.
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A Omitted proofs

I Lemma 12. Let P be a kinetic point set with n points with algebraic trajectories xi(t) ∈
[0, 1]d (t ∈ [0, T ]) of degree at most s, then we need Ω(min( snk , sn

2)) changes in the worst
case to maintain a k-optimal solution.

Proof. We can restrict ourselves to d = 1. We make n/2 points stationary and place them
equidistantly along the interval [0, 1]. The other n/2 points follow trajectories that take
them through the entire interval s/4 times, in such a way that every point moves through the
entire interval completely before another point does so. The trajectory of a non-stationary
point pi is xi(t) =

∑s/4
j=0

1
(t−10·j−10·i·s/4)4+1 . The trajectory consists of s/4 moves through

the stationary points, one such move every 10 time units (see Fig. 8). The i-th point will be
finished 10∗s/4 time units after it starts its first move through the stationary points, while the
(i+1)-st point starts 10 units after the i-th point finishes. The resulting trajectories are clearly
algebraic, and each time a point moves through the entire interval it requires Ω(min(1/k, n))
changes to the solution. As a result, the total number of changes is Ω(min( snk , sn

2)). J

t = 20 t = 30

Figure 8 An instance where the red point moves along the trajectory x1(t) =
∑2

j=0
1

(t−10·j−20)4+1 .
The blue points are stationary, while the red point moves along a trajectory of degree 8. The red
point is the second point to start moving through the blue points (at t = 20). The trajectory is
shown as an arrow along the 1D space, where the gray part has already been traversed.

I Lemma 10. Any spanning tree on a set of n points P is an O(n)-approximation of the
EMST.

Proof. Let T be an EMST on point set P with total edge length OPT. Additionally let
u, v ∈ P , and observe that the path along T from u to v is at least the Euclidean distance
between u and v, d(u, v) ≤ pathT (u, v). Furthermore, any path along an EMST is at most
as long as the total length of an EMST, pathT (u, v) ≤ OPT. If we now take an arbitrary
spanning tree T ′ on the same point set P , then we know that each edge (u′, v′) in this
spanning tree has at most length d(u′, v′) ≤ pathT (u′, v′) ≤ OPT. Since T ′ has n− 1 edges,
its total length is O(n) ·OPT. J
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