

Continuous integration in GITHUB : experiences with TRAVIS-
CI
Citation for published version (APA):
Vasilescu, B. N., van Schuylenburg, S. B., Wulms, J., Serebrenik, A., & Brand, van den, M. G. J. (2014).
Continuous integration in GITHUB : experiences with TRAVIS-CI. In M. Bruntink, & T. Storm (Eds.), Benevol
2014 (Seminar on Software Evolution in Belgium and the Netherlands, Amsterdam, The Netherlands, November
27-28, 2014) (pp. 12-13). Centrum voor Wiskunde en Informatica.

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/820ead85-addf-4680-8c8f-e4b7190964c2

Continuous integration in GITHUB: Experiences with TRAVIS-CI

Bogdan Vasilescu, Stef van Schuylenburg, Jules Wulms, Alexander Serebrenik, Mark G. J. van den Brand
Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{b.n.vasilescu, a.serebrenik, m.g.j.v.d.brand}@tue.nl, {s.b.v.schuylenburg, j.j.h.m.wulms}@student.tue.nl

I. INTRODUCTION

Continuous integration (CI) is a software engineering
practice of frequently merging all developer working copies
with a shared main branch [1], e.g., several times a day, or
with every commit. This continuous application of quality
control checks aims to speed up the development process
and to ultimately improve software quality, by reducing the
integration problems occurring between team members that
develop software collaboratively [1].

With the advent of social media in (OSS) software de-
velopment, recent years have witnessed many changes to
how software is developed, and how developers collaborate,
communicate, and learn [2]. One such prominent change
is the emergence of the pull-based development model [3],
made popular by the “social coding” platform GITHUB. In
this model one can distinguish between direct contributions
to a project, coming from a typically small group of de-
velopers with write access to the main project repository,
and indirect ones, coming from developers who fork the
main repository, update their copies locally, and submit pull
requests for review and merger.

GITHUB’s implementation of the pull-based development
model enables anyone with an account to submit changes
to any repository with only a few clicks. This represents an
unprecedented low barrier to entry for potential contributors,
but it also impacts testing behavior [4]: GITHUB project
owners reported scalability challenges when integrating out-
side contributions, driving them towards automated tests.
Automated CI services, such as TRAVIS-CI1—integrated
with GITHUB itself—or JENKINS2, facilitate this process:
whenever a commit is recorded or a pull request is received,
the contribution is merged automatically into a testing
branch, the existing test suite is run, and the contribution
author and project owner are notified of the results.

This extended abstract summarizes the finding of our
study of TRAVIS-CI, arguably the most popular CI service
on GITHUB [5].3 We quantitatively explore to what extent
GITHUB developers use the TRAVIS-CI, and whether the
contribution type (direct or indirect) or project characteristics
are associated with the success of the automatic builds.

1https://travis-ci.com
2http://jenkins-ci.org
3As supported, e.g., by the blog entries https://blog.codecentric.de/en/

2012/05/travis-ci-or-how-continuous-integration-will-become-fun-again/
and https://blog.futurice.com/tech-pick-of-the-week-travis-ci, acc. 6/2014

II. METHODOLOGY

To understand usage of the TRAVIS-CI service in
GITHUB projects, we extracted and integrated data from two
repositories: (i) GHTORRENT [6], a service collecting and
making available metadata for all public projects available
on GITHUB; and (ii) the TRAVIS-CI API4.

Due to limitations of querying the TRAVIS-CI API, we
focus on a sample of large and active GITHUB projects.
Using the GHTORRENT web interface5, we selected all
GITHUB repositories that: (i) are not forks of other reposi-
tories; (ii) have not been deleted; (iii) are at least one year
old; (iv) receive both commits and pull requests; (v) have
been developed in Java, Python or Ruby; (vi) had at least 10
changes (commits or pull requests) during the last month;
and (vii) have at least 10 contributors. We choose projects
that receive both commits and pull requests, since we want to
understand whether the way modification has been submitted
(commit or pull request) can be associated with the build
success. Our choice of the programming languages has been
motivated by the history of TRAVIS-CI: TRAVIS-CI started
as a service to the Ruby community in early 2011, while
support for Java and Python has been announced one year
later. We expect therefore the use of TRAVIS-CI to be more
widespread for Ruby than for Java and Python.

The data were extracted on March 30, 2014. After filtering
our sample contained 223 GITHUB projects, relatively bal-
anced across the three programming languages: 70 (31.4%)
in Java, 83 (37.2%) in Python, and 70 (31.4%) in Ruby.

To extract data about the automatic builds, we started
by querying the repos endpoint of the TRAVIS-CI JSON
API to determine whether TRAVIS-CI is configured for a
particular project. Then, if the response was not empty, we
iteratively queried the builds associated with this project (25
at a time as per the TRAVIS-CI API) from the builds
endpoint, collecting the event_type fields (that distin-
guish pull requests from pushes) and the result fields
(that specify whether the build succeeded—0, or failed—1).

III. RESULTS

We start by investigating the preference for direct and
indirect contributions among the projects in our sample. The

4http://docs.travis-ci.com/api/
5Accessible from http://ghtorrent.org/dblite/

Prog. lang. Age (years) Contributors
Java Python Ruby <2 2–4 >4 ≤17 17–33 >33

projects 10 34 40 24 42 18 29 27 28
. . . s.t. p < 0.05 3 19 23 9 25 11 18 15 12
H0 7 3 3 7 3 3 3 3 7
%odds ratio>1 n/a 89 87 n/a 92 82 89 80 n/a

Table I
COMPARISON OF SUBGROUPS OF 84 GITHUB PROJECTS BASED ON THE
PROGRAMMING LANGUAGE, AGE AND THE NUMBER OF CONTRIBUTORS.

shared repository model (with contributors having write ac-
cess to the repository) is more popular among Java projects,
while Python and Ruby projects have more contributors sub-
mitting pull requests. Overall, similarly to Gousios, Pinzger,
and van Deursen [3], we see that direct code modifications
are more popular than indirect ones, with only a small
number of projects having more pull requests than commits.

Next we observe that an overwhelming majority of the
projects are configured to use TRAVIS-CI (206 out of 223
projects, or 92.3%).However, slightly less than half of the
206 projects (93, or 45%) have no associated builds recorded
in the TRAVIS-CI database. This shows that while most
projects are ready to use continuous integration, significantly
fewer actually do. Moreover, among the projects configured
to use TRAVIS-CI but not actually using it, Java projects are
overrepresented, while Ruby projects are underrepresented.

We have observed that the median success rate of 79.5%
for commits and of 75.9% for pull requests. To obtain
a more refined insight in whether the success of a build
is independent from the way the modification has been
proposed, we focused on projects that had at least 5 failed
and at least 5 successful builds for each contribution type,
as required by the χ2 test of independence. Out of 113
GITHUB projects configured to use TRAVIS-CI and actually
using it (206 − 93 = 113), 84 projects had sufficient data
for the χ2 test. Among the remaining 29 projects, in most
cases it was the failed pull requests cell that had insufficient
data, i.e., builds fail less frequently when contributions are
submitted via pull requests. We believe this is because when
a developer does not have commit rights, she will try harder
to make sure the change is valid change and it will not break
the build. However, when instead a developer has commit
rights, she can try out new things more freely, since she also
has the power to reverse the change.

The 84 projects subjected to the χ2 test have been
developed in different languages, have different ages and in-
volve different numbers of contributors. Table I summarizes
differences between those languages, ages, and numbers of
contributors in terms of rejecting the null-hypotheses of the
χ2 test, i.e., independence of the build success from the
way the modification has been proposed. We have used the
common threshold of 0.05. The thresholds of 17 and 33
contributors correspond to the 33% and 67% percentiles.
Performing Stouffer tests for each group led to very small

p-values, indicating that results obtained for the majority
of individual experiments can be lifted to the group level.
Table I indicates that null hypotheses, e.g., can be rejected
(3) for Python and Ruby projects, but cannot be rejected
(7) for Java projects. Finally, all odds ratio tests for projects
where the null hypothesis has been rejected (7) for the group
level turned out to be statistically significant (p < 0.05) and
in almost all cases the odds ratios exceeded 1, i.e., whenever
build success depends on the way the modification has been
performed, pull requests are much more likely to result in
successful builds than direct commits.

IV. CONCLUSIONS

In this paper we have studied a sample of large and active
GITHUB projects. We observed that direct code modifica-
tions (commits) are more popular than indirect code mod-
ifications (pull requests). Next, we have seen that although
most GITHUB projects in our sample are configured to use
the TRAVIS-CI continuous integration service, less than half
actually do. In terms of languages, Ruby projects are among
the early adopters of TRAVIS-CI, while Java projects are
late to use continuous integration. For those projects that
actually use TRAVIS-CI, we conclude that pull requests are
much more likely to result in successful builds than direct
commits. However, we observe differences for projects de-
veloped in different programming languages, of different
ages, and involving different numbers of contributors.

ACKNOWLEDGEMENTS

Special thanks to Mathias Meyer and the Travis CI team
for helping us query their API. Bogdan Vasilescu gratefully
acknowledges support from the Dutch Science Foundation
(NWO) through the NWO 600.065.120.10N235 project.

REFERENCES

[1] P. M. Duvall, S. Matyas, and A. Glover, Continuous integra-
tion: improving software quality and reducing risk. Pearson
Education, 2007.

[2] B. Vasilescu, A. Serebrenik, P. T. Devanbu, and V. Filkov,
“How social Q&A sites are changing knowledge sharing in
open source software communities,” in CSCW. ACM, 2014,
pp. 342–354.

[3] G. Gousios, M. Pinzger, and A. van Deursen, “An exploratory
study of the pull-based software development model.” in ICSE,
2014, pp. 345–355.

[4] R. Pham, L. Singer, O. Liskin, K. Schneider et al., “Creating
a shared understanding of testing culture on a social coding
site,” in ICSE. IEEE, 2013, pp. 112–121.

[5] B. Vasilescu, S. van Schuylenburg, J. Wulms, A. Serebrenik,
and M. G. J. van den Brand, “Continuous integration in a
social-coding world: Empirical evidence from GitHub,” in
ICSM. IEEE, 2014, pp. 401–405.

[6] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman,
“Lean GHTorrent: GitHub data on demand,” in MSR, 2014,
pp. 384–387.

