3,492 research outputs found
One hundred angstrom niobium wire
Composite of fine niobium wires in copper is used to study the size and proximity effects of a superconductor in a normal matrix. The niobium rod was drawn to a 100 angstrom diameter wire on a copper tubing
Short oestrous cycles in sheep during anoestrus involve defects in progesterone biosynthesis and luteal neovascularisation
Anoestrous ewes can be induced to ovulate by the socio-sexual, 'ram effect'. However, in some ewes the induced ovulation is followed by an abnormally short luteal phase causing a so called, "short cycle". The defect responsible for this luteal dysfunction has not been identified. In this experiment we investigated ovarian and uterine factors implicated in male-induced short cycles in anoestrus ewes using a combined endocrine and molecular strategy. Prior to ovulation, we were able to detect a moderate loss of thecal expression of steroid acute regulatory protein (STAR) in ewes that had not received progesterone priming (which prevents short cycles). At and following ovulation we were able to identify significant loss of expression of genes coding key proteins involved in the biosynthesis of progesterone (STAR, CYP11A1, HSD3B) as well as genes coding proteins critical for vascular development during early luteal development (VEGFA, VEGFR2) suggesting dysfunction in at least two pathways critical for normal luteal function. Furthermore, these changes were associated with a significant reduction of progesterone production and luteal weight. Additionally, we cast doubt on the proposed uterine-mediated effect of prostaglandin F2α as a cause of short cycles by demonstrating both the dysregulation of luteal expression of the PGF receptor, which mediates the luteal effects of PGF2α, and by finding no significant changes in the circulating concentrations of PGFM, the principal metabolite of PGF2α in ewes with short cycles. This study is the first of its kind to examine concurrently, the endocrine and molecular events in the follicular and early luteal stages of the short cycle
Production and Titering of Recombinant Adeno-associated Viral Vectors
In recent years recombinant adeno-associated viral vectors (AAV) have become increasingly valuable for in vivo studies in animals, and are also currently being tested in human clinical trials. Wild-type AAV is a non-pathogenic member of the parvoviridae family and inherently replication-deficient. The broad transduction profile, low immune response as well as the strong and persistent transgene expression achieved with these vectors has made them a popular and versatile tool for in vitro and in vivo gene delivery. rAAVs can be easily and cheaply produced in the laboratory and, based on their favourable safety profile, are generally given a low safety classification. Here, we describe a method for the production and titering of chimeric rAAVs containing the capsid proteins of both AAV1 and AAV2. The use of these so-called chimeric vectors combines the benefits of both parental serotypes such as high titres stocks (AAV1) and purification by affinity chromatography (AAV2). These AAV serotypes are the best studied of all AAV serotypes, and individually have a broad infectivity pattern. The chimeric vectors described here should have the infectious properties of AAV1 and AAV2 and can thus be expected to infect a large range of tissues, including neurons, skeletal muscle, pancreas, kidney among others. The method described here uses heparin column purification, a method believed to give a higher viral titer and cleaner viral preparation than other purification methods, such as centrifugation through a caesium chloride gradient. Additionally, we describe how these vectors can be quickly and easily titered to give accurate reading of the number of infectious particles produced
Research on a superconducting niobium-thorium eutectic alloy and superconducting composites
Superconducting niobium-thorium eutectic alloy and composite
In Conversation with Mubin Shaikh: From Salafi Jihadist to Undercover Agent inside the "Toronto 18" Terrorist Group
This interview with former undercover agent Mubin Shaikh can help academics and security practitioners understand the key role played and the challenges faced by covert human intelligence sources within domestic terrorist groups. The interview highlights the identity crisis, the personal factors, and the allure of jihadi militancy that initially drove Shaikh to join a Salafi jihadist group. It investigates Shaikhâs process of disengagement from the Salafi jihadist belief system and his rediscovery of a moderate, inclusive, and benevolent form of Islam. It explores his work as an undercover agent for the Canadian Security Intelligence Service, the Royal Canadian Mounted Police, and the Integrated National Security Enforcement Team responsible for disrupting domestic terrorist groups. The âToronto 18â terrorist cell, the key role played by undercover agents in preventing terrorist action, and the challenges posed by entrapment are also discussed
Texture and shape of two-dimensional domains of nematic liquid crystal
We present a generalized approach to compute the shape and internal structure
of two-dimensional nematic domains. By using conformal mappings, we are able to
compute the director field for a given domain shape that we choose from a rich
class, which includes drops with large and small aspect ratios, and sharp
domain tips as well as smooth ones. Results are assembled in a phase diagram
that for given domain size, surface tension, anchoring strength, and elastic
constant shows the transitions from a homogeneous to a bipolar director field,
from circular to elongated droplets, and from sharp to smooth domain tips. We
find a previously unaccounted regime, where the drop is nearly circular, the
director field bipolar and the tip rounded. We also find that bicircular
director fields, with foci that lie outside the domain, provide a remarkably
accurate description of the optimal director field for a large range of values
of the various shape parameters.Comment: 12 pages, 10 figure
Critical and Non-Critical Einstein-Weyl Supergravity
We construct N=1 supersymmetrisations of some recently-proposed theories of
critical gravity, conformal gravity, and extensions of critical gravity in four
dimensions. The total action consists of the sum of three separately off-shell
supersymmetric actions containing Einstein gravity, a cosmological term and the
square of the Weyl tensor. For generic choices of the coefficients for these
terms, the excitations of the resulting theory around an AdS_4 background
describe massive spin-2 and massless spin-2 modes coming from the metric;
massive spin-1 modes coming from a vector field in the theory; and massless and
massive spin-3/2 modes (with two unequal masses) coming from the gravitino.
These assemble into a massless and a massive N=1 spin-2 multiplet. In critical
supergravity, the coefficients are tuned so that the spin-2 mode in the massive
multiplet becomes massless. In the supersymmetrised extensions of critical
gravity, the coefficients are chosen so that the massive modes lie in a
"window" of lowest energies E_0 such that these ghostlike fields can be
truncated by imposing appropriate boundary conditions at infinity, thus leaving
just positive-norm massless supergravity modes.Comment: 29 page
Birch (Betula pendula Roth.) responses to high UV-B radiation
Responses of European silver birch seedlings to highly enhanced levels of UV-B radiation (14.4 or 22.5 kJ mâ2 dâ1 UV-BBE) were studied in a glasshouse experiment. Visible symptoms, membrane lipid composition, secondary metabolites, mRNA levels of chalcone synthase (Chs), localisation of Chs mRNA and leaf structure were analysed. Interveinal chlorosis and asymmetric leaves were induced by UV-B. A significant UV-B -induced increase in 18:2 fatty acid of both glycolipids and phospholipids was detected. UV-B dependent increase in accumulation of a quercetin-3-glycoside and three other compounds, as well as a transient increase in Chs mRNA levels are indicative of induced biosynthesis of flavonoids. In situ experiments showed that mRNA of Chs was mainly found in the upper mesophyll and vascular bundle tissues. Structural observations showed injuries caused by high irradiances. At the light microscopy level there was first a reduction in palisade parenchyma and later a more dense structure of spongy parenchyma cells. Electron microscopy demonstrated an increase in vacuolar membrane whorls and dark bodies, occurrence of lipid material and darkened chloroplast stroma in mesophyll cells. However, results also indicated that Betula pendula is capable of inducing defence reactions such as biosynthesis of flavonoids even at very high UV-B radiation
- âŠ