164 research outputs found

    Topology and weights in a protein domain interaction network – a novel way to predict protein interactions

    Get PDF
    BACKGROUND: While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. RESULTS: We consider a web of interactions between protein domains of the Protein Family database (PFAM), which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. CONCLUSION: Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we show a simple way to predict potential protein interactions by utilizing expectation scores of single domain interactions

    Genome-Wide Associations of Signaling Pathways in Glioblastoma Multiforme

    Get PDF
    Background: eQTL analysis is a powerful method that allows the identification of causal genomic alterations, providing an explanation of expression changes of single genes. However, genes mediate their biological roles in groups rather than in isolation, prompting us to extend the concept of eQTLs to whole gene pathways. Methods: We combined matched genomic alteration and gene expression data of glioblastoma patients and determined associations between the expression of signaling pathways and genomic copy number alterations with a non-linear machine learning approach. Results: Expectedly, over-expressed pathways were largely associated to tag-loci on chromosomes with signature alterations. Surprisingly, tag-loci that were associated to under-expressed pathways were largely placed on other chromosomes, an observation that held for composite effects between chromosomes as well. Indicating their biological relevance, identified genomic regions were highly enriched with genes having a reported driving role in gliomas. Furthermore, we found pathways that were significantly enriched with such driver genes. Conclusions: Driver genes and their associated pathways may represent a functional core that drive the tumor emergence and govern the signaling apparatus in GBMs. In addition, such associations may be indicative of drug combinations for the treatment of brain tumors that follow similar patterns of common and diverging alterations

    Involvement of MicroRNA Families in Cancer

    Get PDF
    Collecting representative sets of cancer microRNAs (miRs) from the literature we show that their corresponding families are enriched in sets of highly interacting miR families. Targeting cancer genes on a statistically significant level, such cancer miR families strongly intervene with signaling pathways that harbor numerous cancer genes. Clustering miR family-specific profiles of pathway intervention, we found that different miR families share similar interaction patterns. Resembling corresponding patterns of cancer miRs families, such interaction patterns may indicate a miR family’s potential role in cancer. As we find that the number of targeted cancer genes is a naı¨ve proxy for a cancer miR family, we design a simple method to predict candidate miR families based on gene-specific interaction profiles. Assessing the impact of miR families to distinguish between (non-)cancer genes, we predict a set of 84 potential candidate families, including 75% of initially collected cancer miR families. Further confirming their relevance, predicted cancer miR families are significantly indicated in increasing, non-random numbers of tumor types

    Bacterial protein meta-interactomes predict cross-species interactions and protein function

    Get PDF
    Background Protein-protein interactions (PPIs) can offer compelling evidence for protein function, especially when viewed in the context of proteome-wide interactomes. Bacteria have been popular subjects of interactome studies: more than six different bacterial species have been the subjects of comprehensive interactome studies while several more have had substantial segments of their proteomes screened for interactions. The protein interactomes of several bacterial species have been completed, including several from prominent human pathogens. The availability of interactome data has brought challenges, as these large data sets are difficult to compare across species, limiting their usefulness for broad studies of microbial genetics and evolution. Results In this study, we use more than 52,000 unique protein-protein interactions (PPIs) across 349 different bacterial species and strains to determine their conservation across data sets and taxonomic groups. When proteins are collapsed into orthologous groups (OGs) the resulting meta-interactome still includes more than 43,000 interactions, about 14,000 of which involve proteins of unknown function. While conserved interactions provide support for protein function in their respective species data, we found only 429 PPIs (~1% of the available data) conserved in two or more species, rendering any cross-species interactome comparison immediately useful. The meta-interactome serves as a model for predicting interactions, protein functions, and even full interactome sizes for species with limited to no experimentally observed PPI, including Bacillus subtilis and Salmonella enterica which are predicted to have up to 18,000 and 31,000 PPIs, respectively. Conclusions In the course of this work, we have assembled cross-species interactome comparisons that will allow interactomics researchers to anticipate the structures of yet-unexplored microbial interactomes and to focus on well-conserved yet uncharacterized interactors for further study. Such conserved interactions should provide evidence for important but yet-uncharacterized aspects of bacterial physiology and may provide targets for anti-microbial therapies

    Stable evolutionary signal in a Yeast protein interaction network

    Get PDF
    BACKGROUND: The recently emerged protein interaction network paradigm can provide novel and important insights into the innerworkings of a cell. Yet, the heavy burden of both false positive and false negative protein-protein interaction data casts doubt on the broader usefulness of these interaction sets. Approaches focusing on one-protein-at-a-time have been powerfully employed to demonstrate the high degree of conservation of proteins participating in numerous interactions; here, we expand his 'node' focused paradigm to investigate the relative persistence of 'link' based evolutionary signals in a protein interaction network of S. cerevisiae and point out the value of this relatively untapped source of information. RESULTS: The trend for highly connected proteins to be preferably conserved in evolution is stable, even in the context of tremendous noise in the underlying protein interactions as well as in the assignment of orthology among five higher eukaryotes. We find that local clustering around interactions correlates with preferred evolutionary conservation of the participating proteins; furthermore the correlation between high local clustering and evolutionary conservation is accompanied by a stable elevated degree of coexpression of the interacting proteins. We use this conserved interaction data, combined with P. falciparum /Yeast orthologs, as proof-of-principle that high-order network topology can be used comparatively to deduce local network structure in non-model organisms. CONCLUSION: High local clustering is a criterion for the reliability of an interaction and coincides with preferred evolutionary conservation and significant coexpression. These strong and stable correlations indicate that evolutionary units go beyond a single protein to include the interactions among them. In particular, the stability of these signals in the face of extreme noise suggests that empirical protein interaction data can be integrated with orthologous clustering around these protein interactions to reliably infer local network structures in non-model organisms

    Centers of complex networks

    Get PDF
    The central vertices in complex networks are of particular interest because they might play the role of organizational hubs. Here, we consider three different geometric centrality measures, excentricity, status, and centroid value, that were originally used in the context of resource placement problems. We show that these quantities lead to useful descriptions of the centers of biological networks which often, but not always, correlate with a purely local notion of centrality such as the vertex degree. We introduce the notion of local centers as local optima of a centrality value “landscape” on a network and discuss briefly their role

    Pembagian Harta Warisan dalam Masyarakat Minangkabau di Kecamatan Medan Area Kelurahan Tegal Sari III Kota Medan

    Get PDF
    The change in the inheritance law of Minangkabau was identified by the agreement among ninik mamak (clan heads), cerdik pandai (the intellectuals), and generasi muda (the youth) in Bukittinggi in 1952. The agreement was strengthened by the seminar on the Minangkabau Customary Law in Padang in 1968. One of the clause was that joint property inherited by heirs had to comply with Faraid (religious obligation). The out-migrated Minangkabau community creates acculturation which influences their way of perception and thinking. Based on this background, the researcher studied the distribution of inheritance among the out-migrated Minangkabau community The Distribution of inheritance in the Minangkabau community at Kelurahan Tegal Sari III, Medan Area Subdistrict, Medan, is based on the Islamic Law. The factors of compliance and piety will cause customary law to be avoided. The change in heritance law can also accurs because of the factors of necessities of life
    corecore