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Genome-wide associations of signaling pathways
in glioblastoma multiforme
Stefan Wuchty1*, Alexei Vazquez2, Serdar Bozdag3 and Peter O Bauer4,5

Abstract

Background: eQTL analysis is a powerful method that allows the identification of causal genomic alterations,
providing an explanation of expression changes of single genes. However, genes mediate their biological roles in
groups rather than in isolation, prompting us to extend the concept of eQTLs to whole gene pathways.

Methods: We combined matched genomic alteration and gene expression data of glioblastoma patients and
determined associations between the expression of signaling pathways and genomic copy number alterations with
a non-linear machine learning approach.

Results: Expectedly, over-expressed pathways were largely associated to tag-loci on chromosomes with signature
alterations. Surprisingly, tag-loci that were associated to under-expressed pathways were largely placed on other
chromosomes, an observation that held for composite effects between chromosomes as well. Indicating their
biological relevance, identified genomic regions were highly enriched with genes having a reported driving role in
gliomas. Furthermore, we found pathways that were significantly enriched with such driver genes.

Conclusions: Driver genes and their associated pathways may represent a functional core that drive the tumor
emergence and govern the signaling apparatus in GBMs. In addition, such associations may be indicative of drug
combinations for the treatment of brain tumors that follow similar patterns of common and diverging alterations.

Background
Gliomas represent a heterogeneous family of primary brain
tumors that are a significant cause of cancer mortality in
the United States [1] with glioblastoma multiforme (GBM)
as their most aggressive form. While gliomas strongly differ
in their geno- and phenotype, genetic and molecular
heterogeneities contribute to the biological and clinical be-
haviour of different glioma subtypes. The availability of
high-throughput gene expression profiles [2-4] provided
the opportunity for a quantitative characterization of indi-
vidual tumors and their classification [5-7]. Recently, sev-
eral groups have identified subnetworks and pathway-based
features that are associated with certain GBM types [8-11]
as well as utilized interactions to identify driver genes [12].
The genomic set-up of GBMs is increasingly well charac-

terized [11,13,14], allowing the identification of certain sig-
nature alterations. In addition, correlations between
changed expression levels of genes and their corresponding

genomic alterations are currently investigated [15,16]. How-
ever, genomic profiling poses a significant challenge to un-
cover driving genomic alterations from the large number of
deletions and amplifications present in cancer genomes.
The use of microarray technology to simultaneously

measure expression of many different genes has been a
driving force for the systematic mapping of eQTLs [17,18],
since gene expression in many individuals is the substrate
for investigating the effects of genomic changes on the ex-
pression of individual genes. While some eQTL analyses of
human brain tissue have been recently reported [19], eQTL
studies have also been combined with network analyses to
identify transcription modules of disease-related, co-
expressed genes [20-23] and to find causal pathways in
glioblastomas [24].
To account for the observation that biological functions

are mediated by groups of genes, we determined associa-
tions between the expression of pathways and genomic
copy number alterations with a machine learning ap-
proach. While large signature alterations were driving the
association patterns of over-expressed pathways, we found
the opposite for under-expressed pathways, an observation
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that held for composite effects between chromosomal al-
terations as well. Confirming their biological relevance,
identified regions were enriched with driver genes that
play a role in gliomas. As a consequence, we observed
pathways that were significantly enriched with such driver
genes. We conclude that such pathways may indicate a
functional core that governs the signaling machinery and
tumor emergence in GBMs.

Results
Determination of pathway associations
We used gene expression profiles of 158 Glioblastoma
Multiforme (GBM) patient and 21 non-tumor control sam-
ples from epilepsy patients that were collected from the
NCI-sponsored Glioma Molecular Diagnostic Initiative
(GMDI) and from Henry-Ford hospital (HF) [13,25]. Ac-
counting for the observation that genes perform their bio-
logical functions as an assembly of genes rather than in
isolation, we collected 181 signaling pathways from the PID
database [26]. Utilizing Gene Set Enrichment Analysis
(GSEA) [27] we compared GBM to non-tumor control
samples and found 119 over-expressed pathways with a
positive enrichment score. Moreover, we obtained 62
under-expressed pathways with a negative enrichment
score. We further determined subsets of genes in each sig-
naling pathway that govern the pathways over/under ex-
pression in the disease cases (Figure 1A). Such ‘leading
edge genes’ were defined as subsets of genes that appeared
in an expression ranked gene list before the enrichment
score of a given pathway reached its maximum [27].
Representing each pathway by its corresponding set of lead-
ing edge genes we assigned a sample specific expression
fold change score to each pathway. In particular, we defined

such a score of pathway p in disease sample j as Ap;j ¼

lg2

X
i∈pEi;jX
i∈pE

N
i

, where Ei,j is the expression value of gene i in

disease sample j, and EN
i is the average expression of gene i

in the set of control samples (Figure 1A).

Searching for genomic loci that potentially play a role in
the underlying expression phenotype, we determined asso-
ciations between the expression fold change scores of path-
ways and copy number variations of genomic loci. Since
genomic variations in neighboring regions tend to be highly
correlated, we first chose a subset of 1,510 representative
loci (i.e. tag-loci) in GBMs. Specifically, we represented each
locus as a x-dimensional vector of copy number alterations
in the corresponding x = 158 patient samples. Focusing on
a potential tag-locus, we greedily accumulated all consecu-
tive loci, so that the Pearson’s correlation coefficient of any
consecutive loci in the region was > 0.95 [24]. While the
number of genes a tag-locus can harbor varied strongly we

found an average of 6.1 genes per tag-locus, a number that
is comparable to the median of 6.5 genes in pooled analyses
of human cancers [14].
We searched for genome-wide associations by non-

linearly fitting pathway fold change scores as a function
of tag-loci’s specific copy number alterations in all GBM
samples (Figure 1B). We represented copy number alter-
ations CNA of a tag-locus i in sample j as lg2CNAi,j and
applied random forest algorithm to assess the impact of
a tag-locus on the regression process by its normalized
importance score. Reflecting the increase of the predic-
tion error when the given locus is omitted in the regres-
sion process, we defined the normalized importance as
�Il pð Þ ¼ Ii pð Þ

σ i pð Þ, where Ii(p) is the average importance, and σi
(p) is the standard error of a tag-locus i for a given path-
way p.
To assess the statistical significance of the normalized

importance of each locus and pathway pair we random-
ized sample-specific pathway fold changes and copy
number alterations. We applied a Z-test to null distribu-
tions thus obtained (Figure 1C) and calculated a P-value
for each tag-locus/pathway pair. Correcting all P-values
by their corresponding false-discovery rate [28] we used
FDR < 0.05 as a threshold to define a significant associ-
ation. While we found 504 significant associations be-
tween 109 over-expressed pathways and 267 tag-loci we
observed 471 associations between 56 under-expressed
pathways and 209 tag-loci (Additional file 1 Table S1).

Analysis of associations
As a benchmark we show a profile of genomic alterations
in glioblastomas in Figure 2A. Specifically, we determined
the frequency of patients with |CNAi| > 1.5 at each tag-
locus i, allowing us to observe large signature areas of gen-
omic amplifications on chromosome 7 and deletions on
chromosome 10. In Figure 2B, we show the distribution of
FDRs of all tag-locus/pathway associations. While associa-
tions to over-expressed pathways largely coincided with sig-
nature alterations, we observed strong associations to
under-expressed pathways that mostly appeared on
chromosome 4. PDGFRA, KIT, and KDR genes that are lo-
cated on the amplified segment 4 q12 probably play an im-
portant role in tumor biology due to their increased
expression of receptors and their ligands. Specifically,
Imatinib mesylate targets PDGF receptors while KIT was
indicated as a mediator of anti-tumor activity in patients
with recurrent GBM [29]. Such results were confirmed in
Figure 2C where we plotted the number of different
pathways that were significantly associated with tag-loci
(FDR < 0.05).
Determining associated genomic areas we counted the

number of pathways that mutually shared tag-loci. We
binned loci according to their corresponding chromosomes
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and pooled all pathways that were significantly associated
with tag-loci on the corresponding chromosomes. We ob-
served a pronounced cluster of chromosomes, pointing to
genomic alterations that were associated to the same over-
lapping sets of over-expressed pathways (Figure 3A).
Specifically, we found that most pathways were shared be-
tween tag-loci on chromosomes 7 and 10. In turn, tag-loci
on chromosomes 1, 2, 4, 14, 16 and 21 shared numerous
under-expressed pathways, suggesting that composite ef-
fects between associated tag-loci largely follow the initial
patterns of single associated loci (Figure 3B).

GRAIL analysis
Since each tag-locus on average harbored more than 6
genes we used GRAIL algorithm [30] to investigate the
relevance of such identified genomic regions based on
previous knowledge about glioma specific disease re-
gions. Utilizing co-reports of genes in PubMed abstracts,
GRAIL explores genes in candidate and reference

genomic regions and automatically assesses their degree
of relatedness. As references we used a list of genes that
are commonly altered in gliomas [2,31] (Additional file 2
Table S2), allowing us to identify potential candidate
(driving) genes. As for associated over-expressed path-
ways, we found 87 tag-loci with genes that were signifi-
cantly similar to genes in the reference regions and
associated to over-expressed pathways (GRAIL P-value < 0
.05, Additional file 3 Table S3). In turn, we found 67 such
tag-loci with associated under-expressed pathways
(Additional file 3 Table S3). In particular, we show such
loci that were associated to more than one pathway in
Table 1. Generally, tag-loci that were associated to many
pathways were highly enriched with genes that were previ-
ously reported to have a driving role in the biology of brain
tumors. Qualitatively, genes that were associated to over-
expressed pathways included prominent signaling and
regulation genes that are involved in receptor tyrosine kin-
ase (RTK) signaling (EGFR, EGF, KRAS, PTEN, FRAP1,

Figure 1 Outline of the procedure. (A) We used 158 gene expression samples of Glioblastoma Multiforme patients (GBM) and 21 non-tumor
control samples. Using 181 pathways we applied Gene Set Enrichment Analysis (GSEA) and found 119 over- and 62 under-expressed pathways.
Determining leading edge genes that govern their over/under expression when comparing disease to control cases we represented each
pathway by its expression fold change score. (B) We fitted pathway fold change scores as a function of the corresponding copy number
variations of tag-loci. Using random forest algorithm we obtained a normalized importance score of each locus/pathway pair. (C) To assess the
statistical significance of a tag-locus’ importance for fitting a pathways expression we performed permutation tests by randomizing both pathway
fold change scores and copy number alterations. Focusing on such random distributions of importance scores we applied a Z-test to determine
P-values, allowing us to assess the significance of an association between each tag-locus and pathway.
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PIK3 subunits and NF1). In particular, the RTK pathway
plays a role in the mediation of growth signals to enhance
cell survival and proliferation. The most commonly affected
gene in the RTK pathway is EGFR, which is amplified in as
many as 45% of GBMs resulting in increased mRNA ex-
pression [2,32]. Other RTKs were also shown affected in
GBMs, such as amplification of PDGFRA and cMET in
13% and 4%, respectively, and mutation of ERBB2 in 8%
of cases [2].

As for driver genes that were located nearby tag-loci as-
sociated to under-expressed pathways, we show such links
between associated genes and their corresponding under-
expressed pathways in a heatmap in Figure 4. Ward cluster-
ing such a matrix, we observed a small cluster of genes that
largely associated with membrane based pathways revolving
around ephrin-A/EphA related pathways previously linked
to GBMs [33]. In the cluster of genes that were largely dif-
ferentially expressed (FDR < 0.05, Student’s t-test) we found

Figure 3 Chromosomal analysis of significant associations. In (A) we counted the number of different, over-expressed pathways that were
significantly associated with tag loci on given chromosomes in GBMs. Clusters in the heatmap suggested that chromosomes 7 and 10 largely
shared most pathways (red box). (B) Analogously, we determined such overlaps of under-expressed pathways, indicating a more scattered result.
Chromosomes 1, 2, 4, 14, 16 and 21 appeared to strongly share pathways (green box).

Figure 2 Statistics of associations. (A) The profile of genomic alterations in glioblastomas allowed us to observe large areas of genomic
amplifications on chromosome 7 and deletions on chromosome 10. (B) Considering their significance, we found that associations to over-expressed
pathways largely coincided with signature alterations. In turn, strong associations to under-expressed pathways mostly appeared on chromosome 4.
(C) Such observations were emphasized by the number of different pathways that tag-loci were associated with if the FDR of an association was < 0.05.
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prominent cancer-related genes such as EGF. Furthermore,
we found CDH13, a calcium-dependent cell–cell adhesion
gene that is associated with working memory performance
in attention deficit disorders and a regulator of neural cell
growth [34]. Also, we observed a member of the MAP kin-
ase family, MAPK10, that plays regulatory roles in signaling
pathways during neuronal apoptosis through its phosphor-
ylation and nuclear localization [35]. PRDM2 is a tumor
suppressor gene and a member of a nuclear histone/protein
methyltransferase superfamily. Although the function of
this protein has not been fully characterized, it may play a
role in transcriptional regulation during neuronal differenti-
ation and pathogenesis of retinoblastoma [36]. Finally, we
observed ABCG2, a membrane-associated protein that is
included in the superfamily of ATP-binding cassette (ABC)
transporters. Specifically, this transporter has also been
shown to play protective roles in blocking absorption at the
blood–brain barrier [37].

The presence of many driver genes that appear in RTK
signaling prompted us to determine pathways that were
enriched with such driver genes. Utilizing Fisher’s exact
test, we found 14 pathways that were enriched with driver
genes associated to over-expressed pathways (P < 0.05).
Analogously, we obtained 12 pathways enriched with
driver genes that were associated to under-expressed path-
ways (Table 2). Generally, such enriched pathways mainly
revolved around ERBB1 signaling while PIK3 subunits and
KRAS mostly drove their enrichment. Furthermore, Table 2
shows that EGFR appeared frequently among enriched
pathways of genes that were associated to over-expressed
pathways. In turn, EGF played this role when we focused
on under-expressed pathways.

Discussion and conclusions
We applied a stepwise methodology to uncover genomic al-
terations that are informative of observed patterns of

Table 1 GRAIL analysis of associations to over- and under-expressed pathways of GBMs

Over-expressed pathways Under-expressed pathways

Tag-locus Chr. Npw Gene Tag-locus Chr. Npw Gene

SNP_A-1731917 10 13 PTEN SNP_A-1705677 4 17 TMPRSS11A

SNP_A-1656043 7 10 EGFR SNP_A-1668058 4 11 BMPR1B

SNP_A-1742783 10 8 PLCE1 SNP_A-1654343 4 9 EGF

SNP_A-1662548 10 8 HABP2 SNP_A-1669535 4 9 ABCG2

SNP_A-1686878 10 8 FAS SNP_A-1751745 4 8 ABCG2

SNP_A-1754053 10 7 PIK3AP1 SNP_A-1705909 4 8 MAPK10

SNP_A-1720407 7 6 EGFR SNP_A-1741853 1 6 C1orf64

SNP_A-1724476 10 6 C10orf46 SNP_A-1706913 1 5 PRDM2

SNP_A-1730020 10 5 CCDC7 SNP_A-1673860 16 5 CDH13

SNP_A-1731857 10 5 BAG3 SNP_A-1697048 16 3 CDH13

SNP_A-1679064 10 4 HABP2 SNP_A-1749105 12 3 EPS8

SNP_A-1747199 7 3 EPHB6 SNP_A-1728851 10 3 MGMT

SNP_A-1674301 20 3 RBL1 SNP_A-1716085 1 3 STMN1

SNP_A-1721335 7 3 CAV2 SNP_A-1652906 4 2 IGFBP7

SNP_A-1683894 7 3 GHRHR SNP_A-1658232 1 2 STMN1

SNP_A-1661029 7 2 NOS3 SNP_A-1721335 7 2 CAV2

SNP_A-1694743 4 2 PI4K2B SNP_A-1651620 11 2 FGF19

SNP_A-1732612 17 2 NF1 SNP_A-1661013 16 2 CYLD

SNP_A-1695427 17 2 KSR1 SNP_A-1739981 12 2 KRAS

SNP_A-1741009 10 2 CCDC7 SNP_A-1655097 4 2 KDR

SNP_A-1720403 7 2 BRAF SNP_A-1750171 1 2 FRAP1

SNP_A-1745332 4 2 INPP4B SNP_A-1723196 3 2 BCL6

SNP_A-1747257 10 2 IL2RA SNP_A-1687110 1 2 C1orf64

SNP_A-1647840 10 2 RET SNP_A-1710047 20 2 JAG1

SNP_A-1663346 7 2 CDK6

SNP_A-1728851 10 2 MGMT

We annotated tag-loci that were significantly associated with more than one over- or under-expressed pathways in GBMs with their corresponding genes
(GRAIL P < 0.05).
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pathway activity changes in glioblastoma multiforme, pro-
viding a high-level picture of the cell’s molecular phenotype.
Usually, association studies suffer from a large number of
tests, contributing to a massive multiple testing problem. In
our case, we mitigated this issue by using a limited number
of tag-loci. Furthermore, a low number of tested pathways
contributed to lower statistical complexity as well, limiting
the number of applied tests.
While others have investigated the influence of copy

number alterations on gene expression in GBMs before,
such studies focused on single genes [38] to identify regula-
tory networks. Furthermore, other authors used network-
based approaches involving genes that were placed in areas
of copy number alterations to identify candidate oncogenic,
modular processes and driver genes [12]. Here, we investi-
gated patterns that emerge from large-scale genomic
eQTL-like associations to whole groups of genes. In par-
ticular, we represented each pathway by its corresponding
leading edge genes, defined as subset of genes that govern
the over/under expression of a pathway, comparing disease
to control cases. Applying a non-linear eQTL approach we
observed that genomic signature alterations of GBMs
largely translated into elevated normalized importance
scores of corresponding tag-loci and high frequencies of
associated pathways. As for over-expressed pathways, sig-
nificantly associated tag-loci were largely limited to chro-
mosomes 7 and 10, an expected result since alterations on
chromosomes 7 and 10 belong to signature modifications
in GBMs. Surprisingly, we observed the emergence of
chromosome 4 as the major contributor of associations to
under-expressed pathways while associations to tag-loci on
chromosomes 7 and 10 were largely absent. Such an obser-
vation was rather unexpected as chromosome 4 lacks

frequent copy number alterations, while its involvement
has been shown only in a subset of GBMs [39]. Further-
more, we also found that composite effects between chro-
mosomes that are associated to under-expressed pathways
also involved a variety of other genomic locations. In turn,
such observations remained limited to tag-loci on chromo-
somes 7 and 10 that were associated to over-expressed
pathways.
Since genomic regions that were found to be frequently

associated to pathways referred to known alterations, we
performed an analysis of the relatedness of genes based on
disease regions in gliomas, allowing us to identify potential
driver genes. Qualitatively, we observed that some genes
were already identified as driver genes in GBMs, indicating
the relevance of the determined associations. Furthermore,
we identified a small set of driver genes that were associ-
ated to under-expressed pathways. While such a set
included EGF as a prominent driver gene we also found a
variety of genes that have important neuronal functions.
While their involvement in such a cluster suggests a com-
posite effect with EGF, their prevalence in associations to
under-expressed pathways may indicate a previously
unknown role in GBMs as well.
While we observed that many observed driver genes

were included in prominent signaling and regulation
pathways we determined pathways that were enriched
with such genes. Since we considered associations to sig-
naling pathways such driver pathways may represent a
core that governs the change of the signaling apparatus
in GBM. In particular, we found 14 pathways that were
enriched with genes associated to over-expressed path-
ways. Specifically, PIK3 subunits, KRAS and EGFR
were frequently involved in such pathways. In turn, we

Figure 4 Driver genes of under-expressed pathways. We mapped driver genes to their corresponding, associated under-expressed pathways.
Specifically, we observed a cluster of genes that was significantly associated to signaling pathways, revolving around ephrin-A/EphA related
pathways. In the small cluster, we identified genes such as CDH13, EGF and MAPK10 that play important roles in neurological functions.
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obtained 12 pathways enriched with genes that were as-
sociated to under-expressed pathways. While PIK3 sub-
units and KRAS were involved in these pathways too, we
frequently found EGF instead of EGFR, an interesting

observation given that the interaction of EGF and EGFR
triggers many important signaling and regulation pro-
cesses in human cancers.
These observed patterns of common and diverging gen-

omic regions may indicate that a rational design of drug
combinations for the treatment of brain tumors follows
similar patterns of common and diverging alterations, gen-
erally pointing to avenues for the design of glioma subtype
specific drug cocktails. In particular, our results suggest
that therapy approaches may target different pathways sim-
ultaneously. Indeed, combination therapy with EGFR in-
hibitors [40] and drugs targeting the PI3K/AKT/PTEN
pathway [41] were considered for the design of GBM spe-
cific drug cocktails.
Currently, we only accounted for genomic alterations,

omitting other potential molecular causes for the emer-
gence of GBMs. Further analysis of associated pathways
will have to include other sources of molecular genome-
wide data. For example, methylation data may indicate
other avenues that contribute to the expression regulation
of pathways. Therefore, the integration of such data as var-
iables may allow us to identify composite effects between
methylation characteristics and genomic alterations that
can influence the expression change of pathways and point
to novel, previously unknown regulation mechanisms.

Methods
mRNA treatment
We investigated 158 glioblastoma multiforme patient and
21 non-tumor control samples from epilepsy patients from
the Rembrandt database (https://caintegrator.nci.nih.gov/
caintegrator/) that were collected from the NCI-sponsored
Glioma Molecular Diagnostic Initiative (GMDI) and from
Henry-Ford hospital (HF) [13,25]. Using HG-U133 Plus 2.0
arrays, normalization was performed at the PM and MM
probe level with dChip [25,42]. Using the average difference
model to compute expression values, model-based expres-
sion levels were calculated with normalized probe level
data, and negative average differences (MM>PM) were set
to 0 after log-transforming expression values [25]. Account-
ing for weak signal intensities, all probe sets with more than
10% of zero log-transformed expression values were re-
moved. To represent a gene, we chose the corresponding
probeset with the highest mean intensity in each tumor
subtype.

Determination of copy number alterations
Matching patient genomic data were collected from
the Rembrandt database (https://caintegrator.nci.nih.gov/
caintegrator/) where all samples were hybridized on
Genechip Human Mapping 100 K arrays. Copy numbers
were calculated using Affymetrix Copy Number Analysis
Tool (CNAT 4). After probe-level normalization and

Table 2 Pathways enriched with driver genes that are
associated to over- and under-expressed pathways in
GBMs

Over-expressed pathways

Enriched pathways P Driver genes

ERBB1_RECEPTOR_PROXIMAL_PATHWAY 0.001 PIK3CA KRAS EGFR
GAB1

VEGFR1_PATHWAY 0.002 PGF PIK3CA NOS3
GAB1

PDGFRBPATHWAY 0.003 PTEN SHB GAB1 PTPRJ
PIK3CA

TCPTP_PATHWAY 0.004 HGF PIK3CA EGFR
GAB1

ERBB1_DOWNSTREAM_PATHWAY 0.005 PIK3CA EGFR GAB1
BRAF KSR1 KRAS

IL2_STAT5PATHWAY 0.019 IL2RA CDK6 PIK3CA

PI3KPLCTRKPATHWAY 0.020 PIK3CA GAB1 KRAS

ERBB1_INTERNALIZATION_PATHWAY 0.022 PIK3CA EGFR KRAS

TRKRPATHWAY 0.023 PIK3CA GAB1 NTRK2
KRAS

RET_PATHWAY 0.038 PIK3CA RET GAB1

FASPATHWAY 0.038 PIK3CA CASP3 FAS

VEGFR1_2_PATHWAY 0.039 PIK3CA SHB NOS3
GAB1

ER_NONGENOMIC_PATHWAY 0.042 PIK3CA NOS3 KRAS

TCRRASPATHWAY 0.045 BRAF KRAS

Under-expressed pathways

Enriched pathways P Driver genes

ERBB2ERBB3PATHWAY 0.005 PIK3R3 MAPK10 FRAP1
KRAS

TCPTP_PATHWAY 0.006 HGF PIK3R3 EGF KDR

ET_EGFRPATHWAY 0.008 FRAP1 EGF

ERBB1_DOWNSTREAM_PATHWAY 0.009 FRAP1 PIK3R3 EPS8
KSR1 EGF KRAS

IL2_1PATHWAY 0.017 IL2RA IL2 PRKCB1 KRAS

ERBB1_RECEPTOR_PROXIMAL_PATHWAY 0.019 PIK3R3 EGF KRAS

ERBB1_INTERNALIZATION_PATHWAY 0.027 PIK3R3 EGF KRAS

TCRRASPATHWAY 0.027 PRKCB1 KRAS

CD8TCRDOWNSTREAMPATHWAY 0.033 IL2RA IL2 PRKCB1 KRAS

CXCR3PATHWAY 0.038 PIK3R3 FRAP1 KRAS

IL2_PI3KPATHWAY 0.041 IL2RA IL2 FRAP1

TELOMERASEPATHWAY 0.043 IL2 EGF FRAP1 NBN

Significantly pooling driver genes that were associated to over-expressed
pathways, we found 14 pathways applying Fisher’s exact test (P < 0.05).
Analogously, we observed 12 pathways enriched with driver genes that were
associated to under-expressed pathways. We annotated all pathways with
their corresponding driver genes.
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summarization calculated log2-tranformed ratios were
used to estimate raw copy numbers. Using a Gaussian ap-
proach raw SNP profiles were smoothed (> 500 kb win-
dow by default) [13,43,44].

Detection of Tag-loci
We represented each patient sample as a set of loci, L =
{l1, l2, . . ., lm}, where each locus li was characterized by the
corresponding copy number cni,j in each case j, CNi =
{cni,1, cni,2, . . ., cni,n}. Since copy numbers of nearby loci
tend to be highly correlated we significantly reduced the
number of loci by a local clustering. For a potential tag-
locus tlk, we greedily accumulated all consecutive loci, en-
suring that the Pearson’s correlation coefficient of CNk

and CNi at any locus li in the region was >0.95. Since adja-
cent regions overlap a gene may belong to more than one
region [24].

Random forests
Random Forests is an ensemble learning method [45]
where regression and classification trees are constructed
using N different bootstrap samples of the data (‘bagging’).
In addition, random forests change how regression trees
are constructed by splitting each node, using the best
among a subset of M randomly chosen predictors
(‘boosting’). New data is predicted by aggregating the pre-
dictions of N trees. As for our regressions, we used

ffiffiffi
n

p
of

all n tag-loci and randomly picked
ffiffiffi
x

p
of all x samples for

the construction of each of N= 1,000 trees. As output,
random forests provide an importance score that reflects
the increase of the prediction error when the given locus
is omitted in the regression process.
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Additional file 2: Table S2. Common molecular alterations (mutations,
amplifications and/or deletions) in gliomas. Molecular alterations are
indicated by the corresponding literature references.

Additional file 3: Table S3. List of all associated tag-loci in GBMs, their
corresponding number of over- and under-expressed, associated
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