13 research outputs found
miRNAs in lung cancer - Studying complex fingerprints in patient's blood cells by microarray experiments
<p>Abstract</p> <p>Background</p> <p>Deregulated miRNAs are found in cancer cells and recently in blood cells of cancer patients. Due to their inherent stability miRNAs may offer themselves for blood based tumor diagnosis. Here we addressed the question whether there is a sufficient number of miRNAs deregulated in blood cells of cancer patients to be able to distinguish between cancer patients and controls.</p> <p>Methods</p> <p>We synthesized 866 human miRNAs and miRNA star sequences as annotated in the Sanger miRBase onto a microarray designed by febit biomed gmbh. Using the fully automated Geniom Real Time Analyzer platform, we analyzed the miRNA expression in 17 blood cell samples of patients with non-small cell lung carcinomas (NSCLC) and in 19 blood samples of healthy controls.</p> <p>Results</p> <p>Using t-test, we detected 27 miRNAs significantly deregulated in blood cells of lung cancer patients as compared to the controls. Some of these miRNAs were validated using qRT-PCR. To estimate the value of each deregulated miRNA, we grouped all miRNAs according to their diagnostic information that was measured by Mutual Information. Using a subset of 24 miRNAs, a radial basis function Support Vector Machine allowed for discriminating between blood cellsamples of tumor patients and controls with an accuracy of 95.4% [94.9%-95.9%], a specificity of 98.1% [97.3%-98.8%], and a sensitivity of 92.5% [91.8%-92.5%].</p> <p>Conclusion</p> <p>Our findings support the idea that neoplasia may lead to a deregulation of miRNA expression in blood cells of cancer patients compared to blood cells of healthy individuals. Furthermore, we provide evidence that miRNA patterns can be used to detect human cancers from blood cells.</p
Perturbing Dynamin Reveals Potent Effects on the Drosophila Circadian Clock
BACKGROUND: Transcriptional feedback loops are central to circadian clock function. However, the role of neural activity and membrane events in molecular rhythms in the fruit fly Drosophila is unclear. To address this question, we expressed a temperature-sensitive, dominant negative allele of the fly homolog of dynamin called shibire(ts1) (shi(ts1)), an active component in membrane vesicle scission. PRINCIPAL FINDINGS: Broad expression in clock cells resulted in unexpectedly long, robust periods (>28 hours) comparable to perturbation of core clock components, suggesting an unappreciated role of membrane dynamics in setting period. Expression in the pacemaker lateral ventral neurons (LNv) was necessary and sufficient for this effect. Manipulation of other endocytic components exacerbated shi(ts1)'s behavioral effects, suggesting its mechanism is specific to endocytic regulation. PKA overexpression rescued period effects suggesting shi(ts1) may downregulate PKA pathways. Levels of the clock component PERIOD were reduced in the shi(ts1)-expressing pacemaker small LNv of flies held at a fully restrictive temperature (29 degrees C). Less restrictive conditions (25 degrees C) delayed cycling proportional to observed behavioral changes. Levels of the neuropeptide PIGMENT-DISPERSING FACTOR (PDF), the only known LNv neurotransmitter, were also reduced, but PERIOD cycling was still delayed in flies lacking PDF, implicating a PDF-independent process. Further, shi(ts1) expression in the eye also results in reduced PER protein and per and vri transcript levels, suggesting that shibire-dependent signaling extends to peripheral clocks. The level of nuclear CLK, transcriptional activator of many core clock genes, is also reduced in shi(ts1) flies, and Clk overexpression suppresses the period-altering effects of shi(ts1). CONCLUSIONS: We propose that membrane protein turnover through endocytic regulation of PKA pathways modulates the core clock by altering CLK levels and/or activity. These results suggest an important role for membrane scission in setting circadian period
Recommended from our members
Expression of 92 kD type IV collagenase/gelatinase B in human osteoclasts
The digestion of type I collagen is an essential step in bone resorption. It is well established that osteoclasts solubilize the mineral phase of bone during the resorptive process, but the mechanism by which they degrade type I collagen, the major proteinaceous component of bone, is controversial. Differential screening of a human osteoclastoma cDNA library was performed to characterize genes specifically expressed in osteoclasts. A large number of cDNA clones obtained by this procedure were found to represent 92 kD type IV collagenase (gelatinase B; MMP‐9, EC 3.4.24.35), as well as tartrate‐resistant acid phosphatase. In situ hybridization localized mRNA for gelatinase B to multinucleated giant cells in human osteoclastomas. Gelatinase B immunoreactivity was demonstrated in giant cells from eight of eight osteoclastomas, osteoclasts in normal bone, and osteoclasts of Paget's disease by use of a polyclonal antiserum raised against a synthetic gelatinase B peptide. In contrast, no immunoreactivity for 72 kD type IV collagenase (gelatinase A; MMP‐2, EC 3.4.24.24), which is the product of a separate gene, was detected in osteoclastomas or normal osteoclasts. We propose that the 92 kD type IV collagenase/gelatinase B plays an important role in the resorption of collagen during bone remodeling
Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2
To initiate adaptive immunity, dendritic cells (DCs) move from parenchymal tissues to lymphoid organs by migrating along stromal scaffolds that display the glycoprotein podoplanin (PDPN). PDPN is expressed by lymphatic endothelial and fibroblastic reticular cells and promotes blood-lymph separation during development by activating the C-type lectin receptor, CLEC-2, on platelets. Here, we describe a role for CLEC-2 in the morphodynamic behavior and motility of DCs. CLEC-2 deficiency in DCs impaired their entry into lymphatics and trafficking to and within lymph nodes, thereby reducing T cell priming. CLEC-2 engagement of PDPN was necessary for DCs to spread and migrate along stromal surfaces and sufficient to induce membrane protrusions. CLEC-2 activation triggered cell spreading via downregulation of RhoA activity and myosin light-chain phosphorylation and triggered F-actin-rich protrusions via Vav signaling and Rac1 activation. Thus, activation of CLEC-2 by PDPN rearranges the actin cytoskeleton in DCs to promote efficient motility along stromal surfaces
Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans
Autoimmunity has long been linked to myocarditis and its sequela, dilated cardiomyopathy, the leading causes of heart failure in young patients. However, the underlying mechanisms are poorly defined, with most clinical investigations focused on humoral autoimmunity as the target for intervention. Here, we show that the α-isoform of myosin heavy chain (α-MyHC, which is encoded by the gene Myh6) is the pathogenic autoantigen for CD4(+) T cells in a spontaneous mouse model of myocarditis. Further, we found that Myh6 transcripts were absent in mouse medullary thymic epithelial cells (mTECs) and peripheral lymphoid stromal cells, which have been implicated in mediating central and peripheral T cell tolerance, respectively. Transgenic expression of α-MyHC in thymic epithelium conferred tolerance to cardiac myosin and prevented myocarditis, demonstrating that α-MyHC is a primary autoantigen in this disease process. Remarkably, we found that humans also lacked α-MyHC in mTECs and had high frequencies of α-MyHC–specific T cells in peripheral blood, with markedly augmented T cell responses to α-MyHC in patients with myocarditis. Since α-MyHC constitutes a small fraction of MyHC in human heart, these findings challenge the longstanding notion that autoimmune targeting of MyHC is due to its cardiac abundance and instead suggest that it is targeted as a result of impaired T cell tolerance mechanisms. These results thus support a role for T cell–specific therapies for myocarditis
Does German Cultural Studies Need the Nation-State Model?
The nation‐state model has long been the basis for the institutional structure in place to teach languages, literatures, and culture at American universities and elsewhere. Nationalism was in fact formative for the establishment of the discipline of German literary and cultural studies itself—and not something brought into its disciplinary history from the outside, as Jakob Norberg, building on earlier research (see for instance Costabile‐Heming/Halverson; Hohendahl, German Studies; Denham/Kacandes/Petropoulos, and McCarthy/Schneider), in a recent issue of the German Quarterly has shown (“German Literary Studies and the Nation.” GQ 91.1, 2018, pp. 1–17). Over the past few decades, this history linking our profession to the nation‐state model has often been questioned by those teaching German literature and culture, while the status of German in general was institutionally quite secure and there was little reason to think about structural changes. This, however, has changed. Not only do fewer students in the United States and across the globe opt to major in German; administrators at many institutions increasingly prefer language, literature, and culture departments to be part of larger structures, thus (implicitly or explicitly) also questioning the value of the nation‐state model that so long has been part of our disciplinary history. In addition, scholars themselves in their teaching and research increasingly choose to emphasize the many global contexts of German literature and culture as meaningful for the study of German itself
Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci
Contains fulltext :
88498.pdf (publisher's version ) (Closed access)To identify new genetic risk factors for rheumatoid arthritis, we conducted a genome-wide association study meta-analysis of 5,539 autoantibody-positive individuals with rheumatoid arthritis (cases) and 20,169 controls of European descent, followed by replication in an independent set of 6,768 rheumatoid arthritis cases and 8,806 controls. Of 34 SNPs selected for replication, 7 new rheumatoid arthritis risk alleles were identified at genome-wide significance (P < 5 x 10(-8)) in an analysis of all 41,282 samples. The associated SNPs are near genes of known immune function, including IL6ST, SPRED2, RBPJ, CCR6, IRF5 and PXK. We also refined associations at two established rheumatoid arthritis risk loci (IL2RA and CCL21) and confirmed the association at AFF3. These new associations bring the total number of confirmed rheumatoid arthritis risk loci to 31 among individuals of European ancestry. An additional 11 SNPs replicated at P < 0.05, many of which are validated autoimmune risk alleles, suggesting that most represent genuine rheumatoid arthritis risk alleles.01 juni 201