14 research outputs found

    Dynamics of Intersexual Dominance and Adult Sex- Ratio in Wild Vervet Monkeys

    Get PDF
    Intersexual dominance relations are important for female mammals, because of their consequences for accessing food and for the degree of sexual control females experience from males. Female mammals are usually considered to rank below males in the dominance hierarchy, because of their typical physical inferiority. Yet, in some groups or species, females are nonetheless dominant over some males (partial female dominance). Intersexual dominance, therefore, also depends on traits other than sexual dimorphism, such as social support, social exchange, group adult sex-ratio, and the widespread self-reinforcing effects of winning and losing fights, the “winner-loser effect.” The importance of sex-ratio and the winner-loser effect remains poorly understood. A theoretical model, DomWorld, predicts that in groups with a higher proportion of males, females are dominant over more males when aggression is fierce (not mild). The model is based on a small number of general processes in mammals, such as grouping, aggression, the winner-loser effect, the initially greater fighting capacity of males than females, and sex ratio. We expect its predictions to be general and suggest they be examined in a great number of species and taxa. Here, we test these predictions in four groups of wild vervet monkeys (Chlorocebus pygerythrus) in Mawana game reserve in Africa, using 7 years of data. We confirm that a higher proportion of males in the group is associated with greater dominance of females over males; a result that remains when combining these data with those of two other sites (Amboseli and Samara). We additionally confirm that in groups with a higher fraction of males there is a relatively higher (a) proportion of fights of males with other males, and (b) proportion of fights won by females against males from the fights of females with any adults. We reject alternative hypotheses that more dominance of females over males could be attributed to females receiving more coalitions from males, or females receiving lowered male aggression in exchange for sexual access (the docile male hypothesis). We conclude that female dominance relative to males is dynamic and that future empirical studies of inter-sexual dominance will benefit by considering the adult sex-ratio of groups.</p

    simulation code

    No full text
    This file contains C++ code which can be compiled in order to run the simulations described in the paper

    Data from: Coevolution between positive reciprocity, punishment, and partner switching in repeated interactions

    No full text
    Cooperation based on mutual investments can occur between unrelated individuals when they are engaged in repeated interactions. Individuals then need to use a conditional strategy to deter their interaction partners from defecting. Responding to defection such that the future payoff of a defector is reduced relative to cooperating with it is called a partner control mechanism. Three main partner control mechanisms are (i) to switch from cooperation to defection when being defected (‘positive reciprocity’), (ii) to actively reduce the payoff of a defecting partner (‘punishment’), or (iii) to stop interacting and switch partner (‘partner switching’). However, such mechanisms to stabilize cooperation are often studied in isolation from each other. In order to better understand the conditions under which each partner control mechanism tends to be favoured by selection, we here analyse by way of individual-based simulations the coevolution between positive reciprocity, punishment, and partner switching. We show that random interactions in an unstructured population and a high number of rounds increase the likelihood that selection favours partner switching. In contrast, interactions localized in small groups (without genetic structure) increase the likelihood that selection favours punishment and/or positive reciprocity. This study thus highlights the importance of comparing different control mechanisms for cooperation under different conditions

    Optimization of long-lasting insecticidal bed nets for resistance management: a modelling study and user-friendly app

    No full text
    Abstract Background Up until the present, pyrethroid-treated bed nets have been a key tool for vector control in the fight against malaria. A global system that sets standards and facilitates procurement has successfully driven down the price of these bed nets to enable more of them to be distributed. As a result of their mass rollout, malaria cases have been significantly reduced, but pyrethroid resistance is now widespread. Going forward, new insecticides have been and continue to be developed for use on bed nets, but it is unclear how to best deploy them for maximum impact. Methods Here, an app for the optimization of bed nets based on their insecticide loading concentration and deployment lifespan is presented. Underlying the app are simple models that incorporate the chemical and physical properties of bed nets, and the genetic and ecological properties of resistance evolution in mosquitoes. Where possible, default parameter values are fitted from experimental data. The app numerically searches across a massive number of these simple models with variable loading and lifespan to find their optima under different criteria that constrain the options for vector control. Results The app is not intended to provide a definite answer about the best bed net design, but allows for the quantative exploration of trade-offs and constraints under different conditions. Here, results for the deployment of a new insecticide are explored under default parameter values across public health budgets for the purchase of bed nets. Optimization can lead to substantial gains in the average control of the mosquito population, and these gains are comparatively greater with lower budgets. Whilst optimizing a bed net within the constraints of the incentives of the existing system of standards and procurement leads to substantially greater control than not optimizing the bed net, optimizing the bed net without constraints leads to yet substantially greater control. The most important factor in this optimization is coverage, which depends on the price per bed net. With this in mind, it is unsurprising that the optimization for plausible budgets suggests that a pyrethroid would be the preferred partner for a new insecticide under current constraints because it is cost-effective in the balance of being less expensive than the new insecticide but also less effective due to pre-existing resistance. Surprisingly, a pyrethroid is shown to be an effective partner for a new insecticide in this model because of its contribution to resistance management in delaying the onset of resistance to the new insecticide. Conclusions This study highlights the importance of trade-offs in the design of bed nets for vector control. Further, it suggests that there are challenges in the roll-out of bed nets with new insecticides because of the constraints imposed by the global system of standards and procurement, which currently fails to adequately incentivize important considerations in bed net design like resistance management

    gr_v064.cpp

    No full text
    The file contains the code to perform simulations for a (hopefully) forthcoming paper on a model on grooming for tolerance.<br

    Dynamics of Intersexual Dominance and Adult Sex- Ratio in Wild Vervet Monkeys

    Get PDF
    Intersexual dominance relations are important for female mammals, because of their consequences for accessing food and for the degree of sexual control females experience from males. Female mammals are usually considered to rank below males in the dominance hierarchy, because of their typical physical inferiority. Yet, in some groups or species, females are nonetheless dominant over some males (partial female dominance). Intersexual dominance, therefore, also depends on traits other than sexual dimorphism, such as social support, social exchange, group adult sex-ratio, and the widespread self-reinforcing effects of winning and losing fights, the “winner-loser effect.” The importance of sex-ratio and the winner-loser effect remains poorly understood. A theoretical model, DomWorld, predicts that in groups with a higher proportion of males, females are dominant over more males when aggression is fierce (not mild). The model is based on a small number of general processes in mammals, such as grouping, aggression, the winner-loser effect, the initially greater fighting capacity of males than females, and sex ratio. We expect its predictions to be general and suggest they be examined in a great number of species and taxa. Here, we test these predictions in four groups of wild vervet monkeys (Chlorocebus pygerythrus) in Mawana game reserve in Africa, using 7 years of data. We confirm that a higher proportion of males in the group is associated with greater dominance of females over males; a result that remains when combining these data with those of two other sites (Amboseli and Samara). We additionally confirm that in groups with a higher fraction of males there is a relatively higher (a) proportion of fights of males with other males, and (b) proportion of fights won by females against males from the fights of females with any adults. We reject alternative hypotheses that more dominance of females over males could be attributed to females receiving more coalitions from males, or females receiving lowered male aggression in exchange for sexual access (the docile male hypothesis). We conclude that female dominance relative to males is dynamic and that future empirical studies of inter-sexual dominance will benefit by considering the adult sex-ratio of groups.</p

    Bill hue and fledgling production.

    No full text
    <p>Fledgling production (standardised by dividing it by the median fledgling production per batch, thus not corrected for differences in longevity; see main text) of males (left panel) and females (right panel) in relation to bill hue. Only in females was redder bill hue significantly associated with reproductive success (see main text).</p

    Bill hue and survival.

    No full text
    <p>Survival of males (left panel) and females (right panel) in relation to bill hue categories (tertiles). Note that data are shown for bill hue tertiles but bill hue was entered as continuous variable in the analyses. In both sexes individuals with low redness survive worst. In females a quadratic relationship of survival with bill hue was detected (see main text).</p
    corecore