51,027 research outputs found

    National Health Insurance database in Taiwan: a resource or obstacle for health research?

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record

    Pseudo spin-orbit coupling of Dirac particles in graphene spintronics

    Full text link
    We study the pseudo spin-orbital (SO) effects experienced by massive Dirac particles in graphene, which can potentially be of a larger magnitude compared to the conventional Rashba SO effects experienced by particles in a 2DEG semiconductor heterostructure. In order to generate a uniform vertical pseudo SO field, we propose an artificial atomic structure, consisting of a graphene ring and a charged nanodot at the center which produces a large radial electric field. In this structure, a large pseudo SO coupling strength can be achieved by accelerating the Dirac particles around the ring, due to the small energy gap in graphene and the large radial electric field emanating from the charged nanodot. We discuss the theoretical possibility of harnessing the pseudo SO effects in mesoscopic applications, e.g. pseudo spin relaxation and switching.Comment: 12 pages, 1 figur

    Two-photon absorption and broadband optical limiting with bis-donor stilbenes

    Get PDF
    Large two-photon absorptivities are reported for symmetrical bis-donor stilbene derivatives with dialkylamino or diphenylamino groups. These molecules exhibit strong optical limiting of nanosecond pulses over a broad spectral range in the visible. Relative to bis(di-n-butylamino)stilbene, bis(diphenylamino)stilbene exhibits a 90-nm red shift of its optical limiting band but only a minimal shift of ~13 nm of its lowest one-photon electronic absorption band. Mixtures of these compounds offer an unprecedented combination of broad optical limiting bandwidth and high linear transparency

    Modeling and Analysis of Power Processing Systems (MAPPS). Volume 2: Appendices

    Get PDF
    The computer programs and derivations generated in support of the modeling and design optimization program are presented. Programs for the buck regulator, boost regulator, and buck-boost regulator are described. The computer program for the design optimization calculations is presented. Constraints for the boost and buck-boost converter were derived. Derivations of state-space equations and transfer functions are presented. Computer lists for the converters are presented, and the input parameters justified

    Modeling and Analysis of Power Processing Systems (MAPPS). Volume 1: Technical report

    Get PDF
    Computer aided design and analysis techniques were applied to power processing equipment. Topics covered include: (1) discrete time domain analysis of switching regulators for performance analysis; (2) design optimization of power converters using augmented Lagrangian penalty function technique; (3) investigation of current-injected multiloop controlled switching regulators; and (4) application of optimization for Navy VSTOL energy power system. The generation of the mathematical models and the development and application of computer aided design techniques to solve the different mathematical models are discussed. Recommendations are made for future work that would enhance the application of the computer aided design techniques for power processing systems
    corecore